
Volume 2 | Issue 6 ©2017 IJIRCT | ISSN: 2454-5988

 IJIRCT1601037 International Journal of Innovative Research and Creative Technology www.ijirct.org
201

Code Clone Detection Using Hybrid Approach

Sayali Sharad Patil
Computer Engineering Department

SSBT's College of Engineering and Technology, Bambhori

Jalgaon, India

Sachin Santosh Chaudhari

Computer Engineering Department

SSBT's College of Engineering and Technology, Bambhori

Jalgaon, India

Ashwini Mukunda Sonawane
Computer Engineering Department

SSBT's College of Engineering and Technology, Bambhori

Jalgaon, India

Sonal Siddharth Salunke

Computer Engineering Department

SSBT's College of Engineering and Technology, Bambhori

Jalgaon, India

Makarand Ramakant Bhole
Computer Engineering Department

SSBT's College of Engineering and Technology, Bambhori

Jalgaon, India

Abstract—Many researchers have look over distinct

techniques to detect duplicate code in programs exceeding

thousand lines of code. These techniques have drawback of

finding either the structural or functional clones. Code clones

are the duplicated code that degrade the software quality and

hence increase maintenance value. Detection of code clone in

software system is extremely necessary to improve design

structure and quality of software product. The proposed

lightweight weight hybrid approach uses textual comparison and

template conversion for detection of method level syntactical and

semantic clones in C file and functional clones in C and Java file.

Keywords— Clone detection, Functional clones, Textual

analysis

I. INTRODUCTION

Copying code fragments and then reusing them through the
paste option with or without any or some minor modification
and adaptation is called Code Cloning and the pasted code
chunk is called a clone [3]. In the software system copied code
chunk and code clones are considered as bad smell of the
software. It is observed that code clone has bad effect on the
maintenance of the software system [4]. To get rid of clones
from the software systems is very necessary and quite
beneficial. These clones are syntactically or semantically
similar. Several studies show that it is hard to detect system
which contains the code clones as compared to other software
system which does not contain any clone. Cloning May
increases the bug possibility, if any bug is found in the code
and that code is reused by copying and pasting then that bug is
also found in that pasted code portion. For fixing the bug all
these code chunk should be detected. Code clones are basically
of four types, where the first three Type I, Type II, Type III are
textual and last one Type IV is functional [11].

II. BACKGROUND

A. Reasons of Code Duplication

Here are many reasons for code duplication. Reuse of code
design and logic is the main cause of code duplication.
Sometimes there is a need to combine two similar system
having same functionalities to create a new one which result
duplication of code even both of the system are developed by
different teams or peoples[8]. One of the major reason of code
duplication is the time limit assigned to developers. Developers
find the easy and simple solutions of the problem due to time
limit. They find the similar code related to their project and
they just copy and paste the existing code [2].

B. Types of Clone

Based on functionalities and program text, two code
fragments are said to be similar. The primary kind of clone are
primarily the results of copy and paste activities. Within the
following type of clone’s type-I, type-II and type-III clones are
mainly based on the textual similarity and type-IV clones are
mainly based on the functional similarity [11].

 Type-I Clone: Type-I clone is an exact same copy
without modifications apart from whitespace and
comments [3]. In type I clone, two code fragments are
similar to one another. However, there can be some
variations in white space, comments and layouts. The
clone pair (a, b) is of type-1 which have exactly the
same code except the alignment, space and comment
[12].

Source Code(a) Type-1 Clone(b)

int main()

{
int a=1;

int b=a+9;

return b;
}

int main()

{
int a=1;

int b=a+9;

return b;
}

http://www.ijirct.org/

Volume 2 | Issue 6 ©2017 IJIRCT | ISSN: 2454-5988

 IJIRCT1601037 International Journal of Innovative Research and Creative Technology www.ijirct.org
202

 Type II Clone: Type-2 is a syntactically same copy;
apart from some changes in variable name, data type,
identifier name, etc. The clone pair (a, c) is of type-2
which have minor variations in function names and
parameters.

Source Code(a) Type-2 Clone(c)

int main()
{

int a=1;

int b=a+8;
return b;

}

int fun2()
{

int s=1;

int t=s+8;
return t;

}

 Type III Clone: Type-3 is a copied chunk with
additional changes. Statements can be modified, added
or removed in addition to variations in identifiers,
literals, types, layout and comments [3]. The clone pair
(a, d) is of type-3 with additional statements in code, as
they need not be functionally similar.

Source Code(a) Type-3 Clone(d)

int main()

{

int a=1;
int b=a+8;

return b;

}

int fun2()

{

int a=1;
int c=a+5;

c=a++;

return c;
}

 Type IV Clone: Two code chunks that perform a
same calculation but implemented through completely
distinct syntactical variations are type-4 clone. The
clone pair (a, e) is of type-4 clones with no similarity in
code, but the output of the functions are same [12].

Source Code(a) Type-4 Clone(e)

int main()

{
int a=2;

int b=a+9;

return b;
}

int add()

{
int n=10;

return ++n;

}

The results of the code clone detection are presented as
clone pairs and clone clusters.

Clone Pair (CP): Clone Pair is pair of code
portions/fragments that are similar or similar to each other [12].

Clone Cluster: Clone Cluster is the union of all clone pairs
that have code portions in common [12]

III. LITERATURE SURVEY

There has been over a decade of analysis within the area of
software clone. Clone detection analysis has proved that
software systems have 9%-17% of duplicated code [7].
Thummalapenta indicated that, in [12] most of the cases,
clones are modified systematically and for the remaining
inconsistently modified cases, clones undergo independent
evolution. Effective code clone detection will support
perfective maintenance. Comparison and analysis of code clone
detection techniques are administrated by Bellon, Koschke and
Roy and Cordy [6]. A clone detection method is typically done

by changing the source code into another type that's handled by
an algorithmic program to detect the clones [7]. Token-based
technique use a similar sequence matching algorithmic
program. However, its accuracy isn't that adequate because the
normalization, and also token conversion method may bring
false positive clones in result set [12]. Several of the clone
detection approaches have used Abstract Syntax Tree (AST)
and suffix tree illustration of a program to search out clones. A
number of the clone detection techniques use an AST that's
generated by a preexisting parser [12]. Baker describes one
amongst the earliest applications of suffix trees for the clone
detection method [3]. An algorithmic program based on
feature-vector computation over AST was applied by Lee to
detect similar clones. However, all of them use parsing, which
ends in heavy-weighted approach. Text-based techniques are
investigated by comparing two code fragments with one
another to search out longest common subsequences of same
strings to find clones [6]. Although these techniques find
clones they are not low in precision values. Metric-based
techniques establish a group of appropriate metrics to find a
specific kind of clone. By a quantitative assessment of the
metric values within the ASCII text file, the clone detection is
finished. Marco Funaro proposed Hybrid technique [7]. A
proposed a hybrid technique using Abstract Syntax Tree to
identify clone candidates and textual methods to discard false
positives. Leitao additionally proposed a hybrid approach with
the combination AST and PDG [4]. Each approaches use
parsing which ends in heavy-weight. As text-based techniques
preserve higher recall, metrics-based techniques preserve
higher precision and each of them are light-weight, a hybrid
technique with the combination of textual analysis and
comparison, is experimenting for the detection of all four types
of clones [12].

IV. EXISTING TECHNIQUES

In the literature many kinds of clone detection techniques
are given. For the analysis purposes most of the techniques are
used, whereas some of them are used for commercial purpose.
Following are some existing techniques for code clone
detection.

A. Text-Based Techniques

In the text based technique the source code chunks are
considered as sequence of line [5]. Once removing the various
comments, whitespace by applying the various transformations
the code fragment are compared with one another. Once the
two code fragment are found to like one another to some extent
they are referred to as clone pair or clone pairs form the clone
class [6]. Text based technique is efficient technique however it
will find only Type I clones. Text based approach can't find the
structural type of clone having a similar logic however
different coding [9]. Within the text based approach following
transformations are applied on source code.

1) Comments Removal: Within the code fragment ignore

all the comments.

2) White Space Removal: Within the code fragment

removes all the tabs and blank lines.

Though text based approach will find only type 1 clone.
This method cannot detect the structural type of clones having
identical logic however completely distinct coding.

http://www.ijirct.org/

Volume 2 | Issue 6 ©2017 IJIRCT | ISSN: 2454-5988

 IJIRCT1601037 International Journal of Innovative Research and Creative Technology www.ijirct.org
203

B. Token-based Techniques

In the token-based technique, initial sequence of tokens is
generated from the source code. For changing the source code
into tokens it needs a lexer[5]. Lexer convert the source code
into tokens then the various transformation are performed by
adding, changing or deleting some tokens. For finding the
duplicated code, the code is scanned. Therefore the code
chunks representing the duplicated code returned as clones.
Token based technique is able to find only type I, type II clone
[11].

C. Tree-baseed Techniques

In the tree-based approach from the source code a parse tree
or an abstract syntax tree is created. This method creates sub
trees instead of making tokens from each statements [7]. The
code then said to be code clone if the sub trees match. With the
help of parser of a language similar sub trees are searched
within the tree using tree matching algorithm or structural
metrics then the code of similar sub trees are returned as clone
pairs[10]. Abstract syntax tree have the entire data concerning
the code. The result obtained from this method is kind of
efficient however to create a abstract syntax tree is difficult for
a large code and therefore the scalability is also not good [12].

D. PDG-based Techniques

Program Dependency Graph (PDG) technique is more
efficient then tree based technique. Program dependency graph
shows data flow and control flow information [7]. First the
program dependency graph is obtained from the source code
then to search out the similar sub graphs or clones many type
of sub graph matching algorithm are applied and returned as
clones. This method will find each semantic and syntactical
clones however just in case of large code to get the program
dependency graph is incredibly tough [6].

E. Metric-based Techniques

In Metrics based Technique initial differing kinds of
metrics of the code like number of lines and number of
functions are calculated and compare these metrics to search
out the clones. Metrics based technique doesn't compare code
directly [4]. To search out the code clones many style of code
metrics are utilized by clone detection techniques. Most of the
time, for calculating the various type of metrics the source code
is converted into abstract syntax tree or program information
graph [7]. Metrics are calculated from the name, layout, control
flow and expression of the functions [10].

V. PROPOSED APPROACH

All the benefits and drawbacks of various approaches
mentioned in above sections that clearly show that although
several techniques but still none is able to search out the clones
properly. Thus we tend to propose a hybrid technique that is
able to search out more number of true positives. This
approach will find all the clones within the system regardless
of their place and will show to the programmer [3]. So that
after or during the development of the code the programmer
itself can determine the chunks that contain the clone and may
decide whether or not to get rid of the clone or it's a good
smell[12]. Within the proposed approach, two code chunks can
be compared. Firstly, the preprocessing is applied on files.
Preprocessing involves removing of comments and white

spaces. A LWH (Light Weight Hybrid) approach has been
proposed with a combination of textual comparison and
template conversion. As there is no need for external parsing,
this approach is of light weight [8]. Moreover, a model has
been arrived to find syntactical and semantic clones which is
able to cover all four types of clones [12]. The proposed LWH
approach is able to find method clones in C projects and
function level clones in C and Java projects.

Fig. 1. Flowchart for Code Clone Detection using Hybrid Approach.

VI. ADVANTAGES

Code clones are the duplicated code which degrade the
software quality and hence increase maintenance cost.
Detection of code clone in software system is very necessary to
enhance design, structure and quality of software product.
Code clone duplication has several benefits within the
development of software project. Some of them are as follows.

 Detects library candidate: Code fragment proves its
usability by coping and reusing multiple times within
the system which will be incorporated in a library and
announce its reuse potential officially [13].

 Understanding Program: It is possible to get an overall
idea of alternative files containing similar copies of the
fragment, if the functionality of a cloned fragment is
understood [13].

 Helps aspect mining research: Detecting code clone is
also necessary in aspect mining to find cross-cutting
issues [13].

 Detects malicious software: To find malicious software
system clone detection techniques will play an
important role [10]. By comparing one malicious
software system to another, it's possible to search out
the evidence where match parts of another [13] parts of
the one software system.

http://www.ijirct.org/

Volume 2 | Issue 6 ©2017 IJIRCT | ISSN: 2454-5988

 IJIRCT1601037 International Journal of Innovative Research and Creative Technology www.ijirct.org
204

 Helps detecting plagiarism copyright content: Finding
similar code may additionally helpful in detecting
plagiarism and copyright infringement [13].

 Software evolution: Clone detection techniques are
successfully used in software system evolution analysis
by looking at the dynamic nature of different clones in
numerous versions of a system [13].

VII. DISADVANTAGES

Apart from advantages of code clones, it has severe impact
on the standard, reusability and maintainability of a software.
The following are the list of some drawbacks of having cloned
code in an exceedingly system.

 Increased probability of bug propagation: If a code
chunk contains a bug and that segment is reused by
coping and pasting without or with minor changes, the
bug of the original chunk may remain in all the pasted
chunk in the system and therefore, the possibility of bug
propagation may increase significantly in the system
[13].

 Increased probability of introducing a new bug: In
many cases, only the structure of the duplicated chunk
is reused with the developer's responsibility of adapting
the code to the current need. This process can be error
prone and may discover new bugs in the system [13].

 Increased probability of bad design: Cloning may also
introduce bad design, lack of good inheritance structure
or abstraction [5]. Consequently, it becomes difficult to
reuse part of the implementation in future projects. It
also badly impacts on the maintainability of the
software [13]

 Increased difficulty in system upgradation: Because of
duplicated code in the system, one needs additional time
and attention to understand the existing cloned
implementation and concerns to be adapted, and
therefore, it becomes difficult to add new functionalities
in the system, or even to change existing ones [13].

 Increased maintenance cost: If a cloned code chunk is
found to be contained a bug, all of its similar
counterparts should be investigated for correcting the
bug in question as there is no guarantee that this bug has
been already eliminated from other similar parts at the
time of reusing or during maintenance [13].

CONCLUSION

A copy and paste activity which is done by developer is the
main reason of code cloning [3]. It looks like a simple and
effective method, but these copy and paste actions are not
documented which create a bad effect on the software quality.
The proposed approach is mainly design to overcome
drawback of existing techniques to detect clone. The proposed
approach is able to detect all four types of clones accurately.
The hybrid approach uses combination of template conversion
and textual comparison to detect syntactic and semantic levels
of clones.

REFERENCES

[1] Hummel B Al-Batran B, Schatz B. “Semantic clone detection for
model-based development of embedded systems”. Institute of computer
science pages 258-272,2011

[2] Mandeep Singh Sandhu Amandeep Kaur. “Software code clone
detection model using hybrid approach”. IJCT, 3(2), October 2012.

[3] B. Baker. ”A program for identifying duplicated code, in: Proceedings of
computing science and statistics: 24th symposium on the interface”.
International Journal of Computer Applications, 24:49–57, 1992.

[4] Madan Lal Manpreet Kaur. “Code clone detection using function based
similarities and metrics”. International Journal of Emerging Research in
Management and Technology, 4(7):156–159, Jully 2015.

[5] Dr. Shahanawaj Ahamad Mohammed Abdul Bari. “Code cloning: The
analysis, detection and removal”. International Journal of Computer
Applications, 20(17), April 2011.

[6] Adamov R. “Literature review on software metrics”. Institute of
computer science, 1987.

[7] Chanchal Kumar Roy and James R. Cordy. “A survey on software clone
detection re-search”. Technical Report, page 541, September 2007.

[8] Kodhai. E Rubala Sivakumar. “Code clones detection in websites using
hybrid approach”. IJCA, 48(13), June 2012.

[9] Yogita Sharma. “Hybrid technique for object oriented software clone
detection”. Masters Thesis submitted at Lulea University of Technology,
2011.

[10] “Finding Clones with Dup: Analysis of an Experiment”. IEEE
transactions on software engineering. 2007, pages 608–621, September
33.

[11] Mohammed, Rowyda, Amal Elsayed, and Mostafa-Sami Mostafa.
"Clone Detection Using DIFF Algorithm For Aspect Mining",
International Journal of Advanced Computer Science and Applications,
2012.

[12] Kodhai, Egambaram, and Selvadurai Kanmani. "Method-level code
clone detection through LWH (Light Weight Hybrid) approach", Journal
of Software Engineering Research and Development, 2014.

[13] Balwinder Kumar, Dr. Satwinder Singh, “ Code Clone Detection and
Analysis Using Software Metrics and Neural Network-A Literature
Review”, International Journal of Computer Science Trends and
Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015.

http://www.ijirct.org/

