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I.  INTRODUCTION 

The problem of delayed systems has been investigated over 
the years. The phenomena of time delay are very often 
encountered in different technical systems, such as electric, 
pneumatic and hydraulic networks, chemical processes, long 
transmission lines, etc. A delay in the control or state evolution 
laws may cause an undesirable system transient response or 
even instability. The analysis of stability for this class of 
system has been of interest to many researchers. 

Nonlinear systems are very often studied in terms of simple 
mathematical models. The Lotka-Volterra equations provide 
such a model and have been used to study physical, chemical, 
ecological and social systems [12]. Stability analysis of 
population models governed by delay differential equation has 
been extensively studied in a number of papers (see [3]-[6] and 
the references there in).  

Recently, Zhen and Ma [14] derived a very reasonable 
condition for the local stability of the competitive Lotka-
Volterra system. Park [11] and Sun [13] showed that the 
estimate on the length of delays in [14] is somewhat 
conservative and gave a less conservative LMI conditions to 
guarantee the local stability of the competitive Lotka-Volterra 
system. However, these results are only concerned with the 
asymptotic stability, without providing any conditions for 
exponential stability and any information about the decay rates. 
It is very well known that for real time computations the fast 
convergence of solution of a system is essential. Therefore the 
exponential convergence rate is used to determine the speed of 
computations. Thus, in general it is important both theoretically 
and practically to determine the exponential stability and to 
estimate the exponential convergence rate. Considering this, 
many researchers have studied the exponential stability 
analysis for systems with time delays in the literatures [7, 8, 9]. 
The choice of an appropriate Lyapunov-Krasovskii functional 
is the key point for deriving of stability criteria. It is known that 

the general form of this functional leads to a complicated 
system of partial differential equations (see [10]). That is why 
many authors considered special form of Lyapunov-Krasovskii 
functional and thus derived simpler (but more conservative) 
sufficient conditions. 

In this paper, we extend the recent results [11, 13, 14] for 
the exponential stability and estimate the exponential 
convergence rates of Lotka - Volterra system with time-varying 
delays. To the best of author's knowledge, the issue of 
exponential stability for a competitive Lotka-Volterra 
population model with time varying delays using LMI 
approach is remains open, which motivates this paper. Based 
on Linear Matrix Inequality (LMI), we establish a new LMI 
condition by using the Lyapunov-Krasovskii functional and 
applying the Jensen's inequality [4] together with the zero 
function to guarantee the exponential stability of the 
competitive Lotka-Volterra system . The obtained stability 
criterion remains less conservative than conditions discussed in 
[11], [13] and [14]. Particularly, the maximal allowable length 
of delays is obtained from LMI and the validity of this result is 
checked numerically using the effective LMI control toolbox in 
MATLAB. 

Throughout this paper, the notation * represents the 

elements below the main diagonal of a symmetric matrix. 
TA  

means the transpose of A . We say YX >  if YX   is 

positive definite, where X  and Y  are symmetric matrices of 

same dimensions. PP   refers to the Euclidean norm for 
vectors. 

II. MAIN RESULTS 

In this section, we derive the necessary and sufficient 
conditions for exponential stability of the following Lotka-
Volterra type competitive system,  
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Where )(1 tx  and )(2 tx  stands for densities of the 

population at time t. iji ab ,  are positive constants and ij  

denotes the time varying delay. 

The initial condition of (1) is given as  
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2x  are defined by (2), then the system (1) 

reduces to the following system  
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One can see from (3) that the variational system of (1) with 

respect to the positive equilibrium 
*x  is given by the 

linearized system of (3) that is,  
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Rewrite (4) in the following matrix form,  
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where ))(),((=)( tvtutx TTT
 is a vector,  
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The equivalent form of (5) is given by 
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where 22211211= AAAAA  . The equation (6) can 

be written as  
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 To establish the exponential stability of the positive 
equilibrium for system (1), it is sufficient to study the 
exponential stability of system (7). The following lemma will 
be used in the crucial role for proving our main results.  

Lemma 2.1 (Jensen's inequality [4]). For any constant 

matrix 0,>=, Tmm MMRM   scalar 0,>  vector 

function 
mR][0,:   such that the integrations 

concerned are well defined, then  
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Theorem 2.2  Let the assumption   

ijijijij dtht  )(,)(0    with  0ijd  and  

01,2,=,0,  tjihij ,  

 holds, For given scalars ij  for 1,2=, ji  system (7) is 

globally exponentially stable, if there exist positive definite 

matrices 0>0,>0,> ijij RQP  for 1,2=, ji  and 0>S  

such that, 
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Proof: Considering the Lyapunov-Krasovskii functional as  
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0,>0,> ijQP  and 0>ijR  are matrices of appropriate 

dimensions to be determined. 

The time derivative of V  along the trajectories of (7)  is 

given by  
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From (7)  for positive matrix 0>S  we have  
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According to the Theorem 9.8.1 in [5], we conclude that if 

matrix inequality (8)  holds, then system (7)  is 

asymptotically stable. This guarantees the exponential stability 

with decay rate   of system (7).  

For the case )(=)( ttij   , 1,2=, ji  or certain 

0,=)(tij  similar to the proof of Theorem 2.2, simplified 

conditions for the exponential stability of the positive 

equilibrium of system (7)  can be derived from Theorem 2.2 

easily. Here we only consider the case )(=)( ttij  . The 

following Corollary is obvious. 
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then the system (7)  is exponentially stable 

III. NUMERICAL EXAMPLE 

Consider the following system [14]  
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For convergence rate 0.5=0.5,= d  and 

1.7038=h  the LMI solutions of Corollary 2.3 for this 

example are,  
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Applying Theorem 2.2 and LMI Toolbox in MATLAB, we 

find that the system (19)  is exponentially stable. The feasible 

solutions with convergence rate 0.5=  , 0.1=2,= d  

as follows:  

,
0.15010.0065

0.00650.1536
10=

,
0.12150.0069

0.00690.1251
10=

10

12























Q

P

 

.
1.90600.0002

0.00021.9061
=

,
0.67750.0001

0.00010.6774
=























S

R

 

TABLE I.  COMPARISION AMONG VARIOUS STABILITY CRITERIA 

   Method     d=0       d=0.1       d=0.5    d=0.9  

Zhen and Ma 

[14]  

 0.34    -    -     -   

Park [11]   0.88    -    -     -   

Sun [13]   1.3623    1.3497    1.2071        1.0486   

Our result 

(Corollary 

2.3) 

 1.7282    1.7248    1.7038    1.6275  

 

CONCLUSION 

A novel exponential stability criteria for a competitive 
Lotka-Volterra population model with time varying delays has 
been provided. The new sufficient criterion has been presented 
in terms of linear matrix inequalities (LMIs). The results are 
obtained based on the Lyapunov theory in combination with 
generalized eigen value problem (GEVP). The validity of the 
approach has been demonstrated by numerical example. The 
maximumum allowable delay is compared with the existing 
results. The criterion is less conservative than those given in 
the earlier references on the stability for a competitive Lotka-
Volterra population model with time varying delays and the 
comparision result has been shown in Table I. 
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