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Abstract—The global exponential stability for a competitive
Lotka-Volterra population model with time varying delays is
investigated. A novel exponential stability criterion for the system
is derived using the Lyapunov method. These stability conditions
are formulated as linear matrix inequalities (LMIs) which can be
easily solved by various convex optimization algorithms. An
example is given to illustrate the usefulness of our proposed
method.
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l. INTRODUCTION

The problem of delayed systems has been investigated over
the years. The phenomena of time delay are very often
encountered in different technical systems, such as electric,
pneumatic and hydraulic networks, chemical processes, long
transmission lines, etc. A delay in the control or state evolution
laws may cause an undesirable system transient response or
even instability. The analysis of stability for this class of
system has been of interest to many researchers.

Nonlinear systems are very often studied in terms of simple
mathematical models. The Lotka-Volterra equations provide
such a model and have been used to study physical, chemical,
ecological and social systems [12]. Stability analysis of
population models governed by delay differential equation has
been extensively studied in a number of papers (see [3]-[6] and
the references there in).

Recently, Zhen and Ma [14] derived a very reasonable
condition for the local stability of the competitive Lotka-
Volterra system. Park [11] and Sun [13] showed that the
estimate on the length of delays in [14] is somewhat
conservative and gave a less conservative LMI conditions to
guarantee the local stability of the competitive Lotka-Volterra
system. However, these results are only concerned with the
asymptotic stability, without providing any conditions for
exponential stability and any information about the decay rates.
It is very well known that for real time computations the fast
convergence of solution of a system is essential. Therefore the
exponential convergence rate is used to determine the speed of
computations. Thus, in general it is important both theoretically
and practically to determine the exponential stability and to
estimate the exponential convergence rate. Considering this,
many researchers have studied the exponential stability
analysis for systems with time delays in the literatures [7, 8, 9].
The choice of an appropriate Lyapunov-Krasovskii functional
is the key point for deriving of stability criteria. It is known that
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the general form of this functional leads to a complicated
system of partial differential equations (see [10]). That is why
many authors considered special form of Lyapunov-Krasovskii
functional and thus derived simpler (but more conservative)
sufficient conditions.

In this paper, we extend the recent results [11, 13, 14] for
the exponential stability and estimate the exponential
convergence rates of Lotka - Volterra system with time-varying
delays. To the best of author's knowledge, the issue of
exponential ~stability for a competitive Lotka-Volterra
population model with time varying delays using LMI
approach is remains open, which motivates this paper. Based
on Linear Matrix Inequality (LMI), we establish a new LMI
condition by using the Lyapunov-Krasovskii functional and
applying the Jensen's inequality [4] together with the zero
function to guarantee the exponential stability of the
competitive Lotka-Volterra system . The obtained stability
criterion remains less conservative than conditions discussed in
[11], [13] and [14]. Particularly, the maximal allowable length
of delays is obtained from LMI and the validity of this result is
checked numerically using the effective LMI control toolbox in
MATLAB.

Throughout this paper, the notation * represents the

elements below the main diagonal of a symmetric matrix. A
means the transpose of A. We say X >Y if X =Y s
positive definite, where X and Y are symmetric matrices of

same dimensions. P-P refers to the Euclidean norm for
vectors.

Il.  MAIN RESULTS

In this section, we derive the necessary and sufficient
conditions for exponential stability of the following Lotka-
Volterra type competitive system,

%, (1) = X (D[P, — &y, (t—73,(1)) —ay,%, (t =73, (1)]
X, (1) = X, (D[P, — 8, %, (t = 7,,(1)) — 3%, (t —7,,(1))]
@)
Where X (t) and X,(t) stands for densities of the
population at time t. by, a;; are positive constants and 7
denotes the time varying delay.

The initial condition of (1) is given as
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X () =@, (s)20,-h<s<0; ¢, (0) >0,
X,(S) =@,(s)=20,-h<s<0; ¢,(0) >0,

and let h=max {7, }.
Under the conditions (see [14])

& > g > &

a21 b2 a22

all positive solutions X(t) = (X, (t), X, (t)) of system (1)

have unique positive equilibrium X~ = (X;, X, ) :
X = b1a22 _bzaiz X = bza11_b1a21
1 ’ .

&18p; — 88, 8185, — 8558y,

Let

u(®) = x,(6) =X, V(O = %O =X,

where XI and X; are defined by (2), then the system (1)
reduces to the following system

u(t) = [u(t) +x 1[-ay,u(t - 7;,(1)) —a,V(t = 7,,(1))]

v(t) =[v(t) + X;][_auu (t=7,1 (1)) —a,,v(t —7,,(1))].

One can see from (3) that the variational system of (1) with

respect to the positive equilibrium X" s given by the
linearized system of (3) that is,

ut) = _aileu (t—7, (1) - a12XIV(t —75,(1))
v(t) = —auXZU (t—7, (1) - aszSV(t — 75, (1))

Rewrite (4) in the following matrix form,

X(t) = — AX(t—73, (1) — AX(t —73,(1))

®)
— Ay X(t =7, (1)) — ApX(t —75,(t))

where X' (t) = (u" (t),V' (t)) is a vector,

_layx 0 _10 apx
A {o o} Ao L 0 }
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a0 0] 4 [0 0
Ylay 0f TP |0 ak|

The equivalent form of (5) is given by

= AX() + Aulx(t) - x(t -z, (1))]

+ A12[X(t) - X(t - le(t))] (6)
+ A, [X(1) = X(t —7,,(t)]

+ Ay [X(t) — X(t — 7, (1)),

X(t) =

where A=A, +A,+ A, +A,,. The equation (6) can
be written as ?)

Xt = —Ax®)+ S AKO-xt-r, O @

i,j=1

To establish the exponential stability of the positive
equilibrium for system (1), it is sufficient to study the
exponential stability of system (7). The following lemma will
be used in the crucial role for proving our main results.

Lemma 2.1 (Jensen's inequality [4]). For any constant
matrix M e R™™ M =MT >0, scalar }(3)> 0, vector

function @:[0,7] > R™ such that the integrations
concerned are well defined, then

~7[@" (BMa(B)dp

<~([[o(B)dp)" M([ o(B)dp). @

Theorem 2.2 Let the assumption

0<z;()<hy,7;(t)<d; with d.>0 and

ij ! ij =

h, >0,i,j=1,2,t>0,

holds, For given scalars 7; for i, J=1,2 system (7) is
globally exponentially stable, if there exist positive definite
matrices P >0, Qij >0, Rij >0 for i, J=1,2 and S>0
such that,
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= —_ —_ —_ —_ T
=i = =13 g =g —A'S
* — T
-5, 0 0 0 S
* * -= 0 0 'S
E — 33 T2 < 0
* * * —
T4 0 Ay
* * * * - T
s 29
* * * * * =
L 66 | (8)

where

=2art: (t)

2 2
By =—-ATP-PA+20P+> Q;—De " (1-d;)Q;,

i,j=1 i,j=1
E:12 = PA11+(1_ dll)e_zmllQlll E‘13 = PA12 + (l_dlz)e_zmlelz'

E:14 = PA21+ (l_dzl)e_zaTZlell Els = PAzz +(1_d22)e_2m22Q227
1

- -2ar —2ar — e -2ar, 1 -2ar
S0 (1_d11)e 11Q11+_e 11R111 =33~ (1_d12)e lZle +—¢€ 1 R121
11 T12
— G —2atyq 1 —2atyq o/ —2aty, 1 —2aty,
':'44 - (1_d21)e Q21+_e RZ]_I ':‘55 — (1_d22)e QZZ +—=8 R22,
T T22
2 2 T
Do = D TRy = D (ST +9).
i,j=1 i,j=1
Proof: Considering the Lyapunov-Krasovskii functional as
V() =V, +V, +V,
where
V, =e**x" (t)Px(t) ©)
2 ot
—_ 2 T
Vv, = ZL e*®x" (s)Q;X(s)ds,
i,j=1 ”(t) (10)
2.0 t
V, = e**x" ()R, X(s)dsd,
? ;‘inj (t)Lﬂ ’ (11)
P>0,Q; >0, and R; >0 are matrices of appropriate The time derivative of V along the trajectories of (7) is
dimensions to be determined. given by

V =V, +V, +V,.
From (9) —(11) we have,

V, = 20 X" (t)Px(t) + 26> X" (t)Px(t)
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<2 [2a X" ()Px(t) + 2x" (t)P(—AX(t) + iAj (X(t) = X(t =7, (£)))]

i,j=1

V, <€ IxT (1) Y QX - 3 (- )e TOKT (t— 1, (1) Qux(t —r, ()]

i,j=1 ij=1

<e X (1) Yo - Y a-d,)e TN (t-1, (1)) Quxt—7, )]

i,j=1 i,j=1

V, <e*[X" (t) irij (t)R; X(t) —'Zz: J.t t_r__(t)ez‘"(s’t) X' (s) R;X(s)ds].

i,j=1

Using the Lemma 2.1 we have,

2 t . .
-> L 71__(t)e2"(5’t)xT (S)R; X(s)ds
ij

i,j=1

<=3 ([ KOS (%) Ry([ KOS,

i,j=1

By the fact that, Jih(t)x(s)ds = x(t) = x(t —h(t)) and

for any scalar S €[t —h,t] we have

“2ah _ o 2a(s)
e <e™ <1 fyrther,

Vo <e* X ) D5 OR xO-D [ e T [x®) - x(t—7, O

e
ij=1 i,j=1 ij®

x(}) R, [X() = X(t — 7, ()]

From (7) for positive matrix S >0 we have

=X (@S +S)x(t) + X" (1)ST{-Ax(t) + ZZ‘,A‘,- [x(t) —x(t—7; (OI}

H-AX(D) + i_Aj [X(t) ~ X(t - 7, (O]} SX(t) = 0.
Set X; (t) = X(t) — X(t —7;; (1)), then

V(t) = e*{x" (t)[2aP — ATP - PA+ ZZ:Q” - ZZ:(]__ d; )e‘z‘”ij ®

i,j=1 i,j=1

Q; Ix(t)

+2x ()P iAi X, (t)+2x" (t)P 22:(1— dy)e 19Q,x, ()

i,j=L L=t

=3 I 0,00 % 0+ X () Dy ORI~ (ST +S)X()

i,j=1 i,j=1
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- zzje‘”””‘ O L) R, % (=X (AT S x(t)—X" (1) ST AX(t)
T

1
i,j=1 ij

+ ZZZXJ A S x(t)+X' (1) ST iAiXiJ '

i,j=1

Thus,
V()<e®™ ETE¢&

where &7 =[x (t) X[ () X5(8) %3, (£) 3, (8) X" (V)]-
According to the Theorem 9.8.1 in [5], we conclude that if
matrix inequality (8) holds, then system (7) s
asymptotically stable. This guarantees the exponential stability
with decay rate a of system (7).

For the case 7;(t)=7(t) , i,j=12 or certain
7;;(t) =0, similar to the proof of Theorem 2.2, simplified

conditions for the exponential stability of the positive
equilibrium of system (7) can be derived from Theorem 2.2

Xy P 25
* S0 0
* * *
* * *
* * *

where

2
%, =-AP—PA+2aP +Q~(1-d)e ™ Y'Q

i,j=1

easily. Here we only consider the case ;(t) =z(t). The
following Corollary is obvious.

Corollary 2.3 Let assumption (A) holds for z(t). If
there exists positive definite matrices
P>0,Q;>0,R;>0 and S>0 such that

S S —AS]
0 0 AlS
T
0 0 T2s <0
3 0 S
* - 255 Aszs
* * 266

ij 1
ij=1

2, = PAL+(1-d)e ™ Q,, T3 =PA,+(1-d)e™Q,,
Zis = PAL+(1-d)e™Qy,  Zys = PA, +(1-d)e™Qy,
20 =(1-d)e™Q, +77e "Ry, Tgy = (1-d)eQ, +7 e Ry,

T,=1-d)e?Q,, +re*R,, 2, =(1-d)e?*Q,,+7 'R,

T =mR—(ST+9),

then the system (7) is exponentially stable

I1l.  NUMERICAL EXAMPLE
Consider the following system [14]

X(1) = X(O[1=x(t = 73,(1)) = 0.5 y(t —7,(1))]
y(®) = yOL1-0.5 X(t =75 (1)) = y(t = 72,(1))]
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For convergence rate «=0.5,d=05 and

h=1.7038 the LMI solutions of Corollary 2.3 for this
example are,

5= 1| 03953 —-0.0013 |
—0.0013  0.4166
0=10" [ 0.2994 - 0.0104',
| -0.0104 0.3550 |
R =10° [ 0.7634 —0.3199"
' —0.3199  0.8004 |
S =10 [ 0.3187 -0.1398
| -0.1398  0.3330

Applying Theorem 2.2 and LMI Toolbox in MATLAB, we
find that the system (19) is exponentially stable. The feasible

solutions with convergence rate ¢ =0.5 , =2, d =0.1
as follows:

o - 102 0-1251
0.0069

,,[0.1536
0.0065

0.0069

0.1215(
0.0065
Q=10 ,
0.1501
0.6774 —0.0001
—0.0001 0.6775
1.9061 0.0002

0.0002 1.9060 |

TABLE 1. COMPARISION AMONG VARIOUS STABILITY CRITERIA
Method d=0 d=0.1 d=0.5 d=0.9
Zhen and Ma| 0.34 - - -
[14]

Park [11] 0.88 - - -

Sun [13] 1.3623 1.3497 1.2071 1.0486
Our result 1.7282 1.7248 1.7038 1.6275
(Corollary

2.3)
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CONCLUSION

A novel exponential stability criteria for a competitive
Lotka-Volterra population model with time varying delays has
been provided. The new sufficient criterion has been presented
in terms of linear matrix inequalities (LMIs). The results are
obtained based on the Lyapunov theory in combination with
generalized eigen value problem (GEVP). The validity of the
approach has been demonstrated by numerical example. The
maximumum allowable delay is compared with the existing
results. The criterion is less conservative than those given in
the earlier references on the stability for a competitive Lotka-
Volterra population model with time varying delays and the
comparision result has been shown in Table I.
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