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Abstract—This paper studies the problem of the stability
analysis for uncertain neutral-type systems. By constructing an
appropriate Lyapunov-Krasovskii functional, some new delay-
dependent criteria can be obtained by using the free-weighting
matrices approach to estimate the derivative of the Lyapunov
functional, which are established in terms of linear matrix
inequalities (LMIs). The novelties in this paper are that any
bounding technique and any mode transformation method are
not utilized. Finally, a numerical example is presented to
illustrate the effectiveness of the proposed method.
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l. INTRODUCTION

Time delays are frequently encountered in many
practical engineering systems, such as chemical processes,
long transmission lines in pneumatic systems [1]-[8]. It has
been shown that the presence of a time delay in a dynamical
system is often a primary source of instability and
performance degradation [9]. Delay-dependent robust
stability criteria of uncertain fuzzy systems with state and
input delays are presented in [10]. Dynamical systems with
distributed time-varying delays have been of considerable
interest for the fast few decades. In particular, the interest in
stability analysis of various delay differential systems has
been growing rapidly due to their successful applications in
practical fields such as circuit theory, aircraft stabilization,
population dynamics, distributed networks, manual control
and so on. Current efforts on the problem of stability of
distributed time-varying delays system can be divided into
two categories, namely delay independent criteria and delay
dependent criteria. Distributed delay systems have been
considered in [11]-[28].

The issue of stability for uncertain neutral systems using
Linear Matrix Inequalities (LMI) approach is studied in this
paper. We established a new LMI condition by using the
Lyapunov-Krasovskii functional to guarantee the asymptotic
stability of the system concerned. A sufficient condition for
the solvability of this problem is proposed in terms of Linear
Matrix Inequalities (LMIs) and the validity of this result is
checked numerically using the effective LMI control toolbox
in MATLAB.

NOTATIONS: Throughout this paper, for a matrix
B and two symmetric matrices A and C,
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A B

C | denote the symmetric matrix, where the

notation * represents the entries implied by symmetry. A
and A™' are denotes the matrix transpose and inverse of

A respectively. We say X >0 for X € R" means that
the matrix X is real symmetric positive definite. P-P

refers to the Euclidean norm for vectors. And | denotes the
identity matrix with appropriate dimensions.

Il.  PROBLEM FORMULATION AND MAIN RESULTS

Consider the following uncertain Neutral-type neural
networks with discrete and distributed delay.

X(t) = —A)X(t) +W, (1)  (x(1)) + W, (t) T (x(t - 7))

x(0) = §(0), V6 €[-1,0], n = maxth, 7, r}
1)
Where X(t) € R" is the state vector. h,z,t represent

the neutral-delay, discrete delay and distributed-delay,
respectively. The initial condition ¢(t) denotes a continuous

vector-valued initial function on the interval [—77,0].
AW,,W,,C and W, € R™ are constant matrices, For
system (1) , the nominal form is given as follows:

K(t) = —AX(t) + W, T (x(t) +W, f (x(t — 7)) + Cx(t |

x(0) = ¢(0), VO [-n,0],n =max{h,z,r}.
&)

I1l.  MAIN RESULTS

Theorem 3.1 For three given scalars h >0, 7 >0, and
r >0, if there exist some positive definite symmetric

matrices: Py, Py, Py, Py, Q(i=12,.....,8) e R™
and some appropriately dimensional matrices: (P} )i j<as
K=[K KT, L=[4. L], M=[M/ ,MT,
N =[N, ,NJ]", such that the following linear matrix
inequalities (LMIS) hold.

IJIRCT1601024 | International Journal of Innovative Research and Creative Technology | www.ijirct.org | 143


http://www.ijirct.org/

Volume 2 | Issue 3 ©2015 WIRCT | ISSN: 2454-5988

r 7 d
P, Py Ps R, an
* P, Pos P, =< 0, @
P=]* * P Py |20, ©) =2<0,
* * * P
44 Where,
B - Ek = (Qk )9><9

QY =[-P,A-AP] +PL +P,+P} +P,—Q, +Q, +hQ, +Q, + K] + K, +hL] +hL, + M, + M/
+N; + 7N, ],

Qifz :[_AT P,+ Psz_Pls"'Pszt_KlT +K, +hL,], QI1<3 =[P, +R.C],

QI1(4 =[_F)14_M1T +M, +7N,], Qll(s =P W,, Qll(es =BW,

Ql1(7 =B W,, Qis = h[_AT Ps+Pst P3T4_ LI],

h? 2
Q% =7[-A"R, +P,+P,—N], Ql =-hk' _?L}, 02 =M _?N;,

O, =[-PL—P,—K! —K,-Q], Q% =[P,+PIC], O =[-P.],
Qs =[PIW,], Q% =[PIW,], Qf =[P.W,], Qi =h[-P,—L)],

2
Q§8=2P34, legz_hsz _h?LTz’ Q§9=0, Q§3=_Q21 95420’

Qgs =0, Qge =0, QI3(7 =0, Qéa = h[CT Ps+ Pyl

Q§8 = T[CT P+ Pyl Qgg =0, Qlfm =[Q;— MZT -M,], Q§5 =0, QZG =0, Qt(w =0,

2
QiSZh[_PSA]’ QLZISZT[_PA-EI_N;]! Qigzoa Qig:_ﬂvl;—%NzT,

Qgs = [r2Q8 +S5], Qge =0, QE? =0, Qés = h[\NOT Pal, Qés = T[\NOT P.l
Qég =0, Qle(se =[-S], 927 =0, st = h[W1T Pl Qgs = T[WlT Pl Qgg =0,

O =[-Qs], @3 =hW, Ra], Q7 =7[W, R,], Q5 =0, Qg =[-hQ,],

O, =[-Q], 0l =0, 04 =[-hQ~ Q) 9 =[-1Q - Qul,

and * means the symmetric terms, then the nominal system (4) is asymptotically stable.

Proof: Define a Lyapunov-krasovskii functional candidate for system (4) as
V(t, x) =V, (t, X)+V, (t, X) +V,(t, X), (6)
Where

Vi(t x) = & (PE(),
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V(60 = [ X (Qux(e)ds + [ X' (5)Q,x(s)ds
+[ X ©QuxEds+ [ 17 (x(e)Sf (x(s))ds,

Vo) = [ [ X" (9)Qux(9)dsdo+ [ [ x" (s)Qux(s)dsde
+[ [ X (6)Qx(e)dsdo + | [ X($)QX(s)dsdd
+r[ [ FT (N, f (x(s)dsdo

Where

§(t):[xT(t) X(t-h) [ X (9)ds foT(s)ds}

Then, the time derivative of V (t, X) with respect to t
along the system (4) is..

V (t, X) =V, (t, X) +V, (t, X) +V, (t, X), @
Where

Vi(t,) = 2[x" (©R, + X ()RS + [ X" (s)dsRE + | X" (s)dsRi]
[ AX(t) +Wo f (X(2)) +W, F (X(t ~ 7))+ CX(E~h) +W, [ (x(5))ds]
+2[¢ (O, +X (t—h)P,+ [ X (5)dsPL + [ X" (S)dsPIX(t—h)
+2D (OB +X (E=NPy+ [ X7 (5)dsPyy+ [ X ()SPLID(D) ~x(t -]

+2[X OB+ X (t=h)Py,+ [ X ()P + [ X (s)dsP, JIx(1) - x(t—7)], ©

V, (%) = X (©[Q, +QIx() + X' (t—h)[-QuIx(t —h) + X" ()[Q,1X(t)
+X (= h)[-QIX(t—h) + X (t—7)[-Q]x(t —7)
+ T (x(t - 2))[-S1F (x(t =) + T T (xS (x (1)), 9)

Vs (t,%) = X" (0)[Q, +2QsIx (1) + f T (x(D)[r Q] T (X(5))
+ X" (O[NQ, +7Q; 1X(t)

- [ X ORIXE)ds - [ X" ()QIx(s)ds—[ X" ()[QsIx(s)ds

IJIRCT1601024 | International Journal of Innovative Research and Creative Technology | www.ijirct.org | 145


http://www.ijirct.org/

Volume 2 | Issue 3 ©2015 WIRCT | ISSN: 2454-5988

[ X ORI ds—r[ T (X(SDIQIF (x(s)ds. w0

By using the Jensen’s inequality

i ‘W(s)ds]" M[ [ ‘W(s)ds] < r joer (s)Mw(s)ds

We have,
Vy(6,X) = X (O[NQ, + 2 Ix())+ T (X(D)Ir*Qe] f (x(1))

+X (OIMQ, + Q%)

~[[ X(©)dsT [Q.Ix(S) [ x(s)asT' [Qs1x(s) ~ L[ x(s)elsT [QIX(s)

[ X(©)dsT'[Q1x(8) L[ (x(sNasT'[QIL[,_ T (x(s))ds]. 1)
And from Leibinz-Newton Formula the following appropriate dimension,

equating are true for real matrices K, L, M, N with an

o, (1) = 2 (DK [x(®) - x(t—h) — [ x()ds] =0, (12)
o, (0):= 26 O IO~ [ x()ds [ x(s)dsd6] =0 13)
o,(t) = 28 OMT X - x(t-7)~ [ X(8)]=0, (14)
Where

£ (1) = {xT ) x(t- h)] £ )= {xT ® x'(t —r)]

Suppose that

ZA:ai ) =x" O)[K] + K, +hL +hL, +M, +M,]x(t)

+2x" (O[-K] + K, +hLIx(t —h)+2x" ()[-M, +M,Ix(t —7)

X7 (t—h)[=K] =K, Ix(t—h) + X" (t=2)[-M] — M, Ix(t - )

+x' ([-hLg Ix(s) +2x" (t)[-hK] —h?z Ly Ix(s)

+ X" (1) =M, x(s)

+2X (t = h)[=hLT x(s)

+2x" (t—h)[-hK] —h—; LT1%(s) + 2%" (t— 2)[=eM T IX(S). (15)
Combining from (10) to (15), we obtain

V (t,x) =V, (t, X) +V, (t, X) +V, (t, X) +Z4“ai (t),
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V(t,x) <X (O-PiA-PA" +P; + Ry + P, +Q +Q +hQ, +7Qs + K +K;
+hl] +hL + M, +M,]x(t)
+2X" (t)[-A"P,+ P —P,+P), — K] + K, +hL,Jx(t —h)
+2x" (D[P, + R,CIX(t —h) +2x" ()[-P, —M; + M, ]x(t - 7)
+2x" O[RW,1T (x(1) +2x" (O[RW,] f (x(t 7))
+2x (t)[Pqu]Lf (x(s))ds +2x" ()h[~A" Py + Py; + Py, — L1 1X(5)
+2x" (t)7[-A" R, + Py, + PLIX(S)
T 2XT[-hK] _h_22 LTIX(s) + 2X" (t)[~eM ] JX(S)
+2x" (t=h)[-Pyj — P, — K3 —K; ~Q,Ix(t=h)
+2%" (t—h)[P,, + PLCIX(t — h) + 2X" (t — h)[P,,]x(t —7)
+2x" (t=h)[PIW,IT (x(1)) +2x" (t —h)[PW,] f (x(t 7))
+2x (t-h)[PIW, ][ f (x(s))ds

+2x" (t—h)h[-Py; — Ly IX(8) + 2" (t —h)[2P;,]X(S)
+2X (t—h)[-hK] —h—; LTIX(s) + 2X" (t— h)[-Q,]x(t - h)

+2X" (t—h)h[CT P, + P, Ix(s) + 2X" (t —=h)z[CT P, + P, IX(S)
+X (t-7)[-Q; =M, —M,Ix(t—7)

+2X" (t—7)h[-PIX(s) +2X" (t—7) [P, — N; 1X(s)

+2X" (t—7)[-M] —22N] JX(s)

+ 1T (XO)r*Q, + ST (X(1)

#4217 (X(O)NWq RaIX(8) + 2 (X(O)7Wg P, ]X()

+2F T (X(t—7))[-STF (X(t — 7)) + 2 F T (x(t —2))h[W, PIX(S)

+ 2T (x(t—1))z[W," PIX(s)

+2 1T ((E)S-Qu[ T (x(s)ds+[ T (x(s)hW; PIx(s)
+2[ £7(x())ds W, P, Ix(s)

+X' (8)[=hQIx(8) + X" ($)[-7Qs ]X(s)
+X' (8)[-hQsI%(8) + X" ($)[-7Q;1X(s)
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+X' ()["Q; +7Q; +Q,1X(t).
Then X' (t)["Q, +7Q, +Q,IX(t) =0, sub into (19),
V(t, ) <n" (1) Z" n(t)+7" (1) Z° ().
V(t,x) <0,

Where

n = [XT () X" (t—h) X (t=h) X7 (t=7) £ (@) £ (xt—2)) | t_rf (x(s))ds X" (s) X" (s)}

and thus according to Lyapunov stability theory, The 0.0466 —0.1564
nominal system (1) is asymptotically stable. P,= 1078 ' ,
—0.1564 1.0949
IV.  NUMERICAL EXAMPLE - .
To illustrate the usefulness of the proposed approach, we P, = 1078 0.0333  —0.0595 ,
present the following example. | —0.0595 0.0542 |
Consider the following uncertain Neutral-type systems = A
with the parameters as follows: P.=10"° 0.1476  -0.0014
13 )

—-0.0014 0.1363 |

X(t) = —AX(t) + W, T (X(t) +W, f (X(t — 7))+ CX(t —h) + W, f_rf OB o0 o 05001

/=108 ,
|—0.0500 1.8133 |
A~ 005 0 W _002 0 P =10 0.2785 —0.3741’
o —18 7005 1l |-0.3741 0.3.2018]
w4 0ty Z[-85 1] Pza{—o.w? —0.0004}
Y7102 -003] ? |02 o041 —0.0004 -0.1440
-1 1 oo 02 0 P =10° 5.4204 —0.1904}
102 01 T |0 02 :—0.1904 5.7305
05 0 05 0 o - 0.3873 —0.1851
E =] By = , = _0.1851 3.8283
0 05 0 05 -
! 0.7163 —0.7828
E - 05 0 P34=1076 :|’
4 0 05 :—0.7828 9.9407
41666 0
0 R A= Pu =107 g 41666}
“lo o5 ° |0 05/ L :

with £=0.35,h=0.01, 7= 0.02, r = 0.01,. Then by 0, = 10—{ 6.3798 - 0'0489}
applying Theorem 3.1 in MATLAB LMI Toolbox the —0.0489 5.7799

feasible solutions are _ 0.0030 -0.0023
—~0.0023 0.0074 |

2

(16)

(17

(18)
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0 1.4845  0.0155
3 0.0155  1.5291(

0.0138 0.0022

9 =|00022 0.0090]
,[4.0398 0.0070
Q, =10 ,
0.0070 4.0488
o - [ 0.0040 —0.0433]
°-0.0433 0.4208 |
o = [ 0.1262  —0.9209 |
" |-09209 7.0205 |
o - [5.2884 0.0101
®10.0101 6.8036

Therefore the uncertain Neutral-type systems is
asymptotically stable.

CONCLUSION

In this paper, by constructing an appropriate Lyapunove-
Krasovskii functional, and employing the free-weighting
matrices technique, some sufficient conditions ensuring the
robustly stability for uncertain neutral-type systems are
derived, Numerical examples are provided to illustrate the
effectiveness of our obtained results.
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