
Volume 2 | Issue 1 ©2015 IJIRCT | ISSN: 2454-5988

 IJIRCT1601004 International Journal of Innovative Research and Creative Technology www.ijirct.org 20

Performance Analysis of different Mathematical

Algorithms in Parallel Environment

Dilip Kumar Nayak
Student, Raipur Institute of Technology

Chhatouna, India

Mr. Avinash Dhole

Assistant Professor, Raipur Institute of technology

Chhatouna, India

Abstract—In Present day, multicore systems have become

popular as it provides parallelism and hence less delay, but

multicore systems provide only hardware parallelism. In order to

achieve best result we should use software parallelism also. To

achieve software parallelism there are many programming model

like OMP, MPI etc. Now a day’s high performance computing

mainly center’s around parallel computing. Parallel computing is

the ability to carry out multiple operations or tasks

simultaneously. Ideally, parallel processing makes programs run

faster because there are more engines (CPUs or cores) to run the

program. Sequence and series like sin series, cos series,

arithmetic progression, geometric progression, harmonic

progression are most frequently used in mathematical tools.

Therefore the parallel computation is an efficient way to improve

the performance. By putting some constraints on the data and

taking the advantage of the hardware. The performance of the

different sequential and serial algorithms can be significantly

improved. This paper provides the review of various

mathematical algorithms which has developed parallel.

Keywords— Sequence and series, Geometric

Progression(g.p.), Harmonic progression(h.p.), Arithmetic

Progression (a.p.), Parallelism

I. INTRODUCTION

The field of numerical analysis predates the invention of
modern computers by many centuries .Linear interpolation was
already in use more than 2000 years ago. Invention of the
computer also influenced the field of numerical analysis, since
now longer and more complicated calculation could be done
[1].

Geometric Progression is a mathematical tool which is
designed for solving a scientific problem more quickly when

 Classic methods are too slow.

 For finding an approximate solution when classic
methods fail to find any exact solution [2].

There are various series like: Arithmetic
progression, geometric progression, sin series, cos series. A
geometric progression is a sequence of numbers where each
term after the first is found by multiplying the previous term by
a fixed number called the common ratio. The sequence

 1, 3, 9, 27 . . .

It is a geometric progression with first term 1 and common
ratio 3. The common ratio could be a Fraction and it might be
negative.

In general we can write a geometric progression (g.p.) as
follows: a, ar, ar2, ar3 .the nth term of a g.p. is given by: ar(n-1)

The sum of the first n terms of a g.p. is Sn=a(1- rn)/(1-r)
valid only if r≠ 1.The sum of the terms of a geometric
progression is known as geometric series [2].

Today’s the parallel algorithms are focusing on multi-core
systems. The design of parallel algorithm and performance
measurement is the major issue on multicore environment. If
one wishes to execute a single application faster, then the
application must be divided into subtask or threads to deliver
desired result.

II. VARIOUS MATHEMATICAL TECHNIQUES

A. Mr D.S. Ruhela and Mr R.N.Jat, “Complexity &

Performance Analysis of Parallel Algorithms of Numerical

Quadrature Formulas on Multi Core system Using Open

MP)”.(2014)

The authors studies two version of numerical quadrature
algorithms: sequential and parallel. In the experiments the
execution times of both the sequential and parallel algorithms
have been recorded to measure the performance (speedup) of
parallel algorithm against sequential. The result obtained shows
a vast difference in time required to execute the parallel
algorithm and time taken by sequential algorithm. Based on
their study, they concluded that parallelizing serial algorithm
using Open MP has increased the performance [1].

B. M. F Mridha, Mohammad Manzurul Islam, Syed

Mohammad Oliur Rahman. “A New Approach of

Performance Analysis of Certain Graph Algorithms

“(2013)

In this paper authors presented a new parallel Prim
algorithm that grows multiple trees in parallel. They made
simple observations based on the cut property of the graph to
grow MSTs in parallel. Their algorithm achieves reasonable
speedup when it is compared with Serial Prim algorithm for
dense graphs and sparse graphs. The Speedup computed helped
realize performance improvements by the use of parallel
algorithms. In case of breadth first search algorithm in parallel
when graph is sparse speed up is 2.0 while that of when graph
is dense 1.9. As for as prim’s is concerned speedup is at the
minimum of 1.96 i.e. 2.0 more when at least 2 threads are used
[4].

C. Mr. Nagraj and Mr. Kumarasvamy,”Serial and Parallel

Implementation of Shortest Path Algorithm in

Optimization Of Public Transport Travel”,(2011)

This paper suggests execution of 3 shortest path algorithms
(Dijkstras’s algorithm, Bellman Ford algorithm and Ant-

http://www.ijirct.org/

Volume 2 | Issue 1 ©2015 IJIRCT | ISSN: 2454-5988

 IJIRCT1601004 International Journal of Innovative Research and Creative Technology www.ijirct.org 21

Colony algorithm) serially and parallel (Using OMP).And
shows the result that time cost of multithreaded parallel
algorithm on dual core system are much faster than the serial
algorithm. The parallel running speed can be improved with the
increase of number of cores [5].

D. Abdulellah A. Alsaheel, Abdullah H. Alqahtani &

Abdulatif M. Alabdulatif “Analysis of parallel boyer

moore String search algorithm “ ,(2013)

Boyer Moore string matching algorithm is one of the
famous algorithms used in string search algorithms. Widely, it
is used in sequential form which presents good performance. In
this paper a parallel implementation of Boyer Moore algorithm
is proposed and evaluated. Theoretically, it proved that the
performance of the parallel algorithm is cost optimal with zero
overhead. In practical experiment, different sizes of data have
been used to show that the parallel algorithm is very faster and
better than sequential especially when the data is large.

E. Mr. Sanjay Kumar Sharma and Dr. Kusum Gupta

“Performance Analysis of Parallel Algorithms on Multi-

core System using OpenMP”,(2012

Authors have studied the typical behavior of sequential
algorithms and identified the section of operation that can be
executed in parallel and presented the execution time of both
serial and parallel algorithm for computation of Pi value. They
concluded that the parallelizing serial algorithm using Open
MP has increased the performance and for multi-core system
Open MP provides a lot of performance increase and
parallelization can be done with careful small changes. And at
last the parallel algorithm is approximately twice faster than the
sequential and the speedup is linear [7].

F. Pranav Kulkarni and Sumit Pathare “Performance

Analysis of Parallel Algorithm over Sequential using

OpenMP”(2014)

The author studied some algorithms like matrix
multiplication and Floyd-Warshell Algorithm and found that
the algorithms with small data set gives good performance
when executed by a sequentially programming. But as data set
increases performance of sequential execution falls down
where parallel execution is used for large data set then it gives
best results than sequential execution. [8].

G. Anupreet Kaur, Pawan Kumar” Performance Analysis of

Scheduling Algorithms in Simulated Parallel

Environment”

In this paper author had demonstrated the advantages of
deploying a scheduling algorithm method in a parallel system.
It had presented an scheduling algorithm method and
demonstrated its favorable properties, both by theoretical
means and by simulations With the proposed scheme, a kind of
statistical multiplexing of the incoming traffic over the multiple
processors is achieved, thus in effect transforming a network
node into a parallel computer. The improvements of processor
utilization decrease the total system cost and power
consumption, as well as improve fault tolerance.

III. GEOMETRIC PROGRESSION

A geometric progression is a sequence of numbers where
each term after the first is found by multiplying the previous
term by a fixed number called the common ratio. The sequence

 1, 3, 9, 27 . . .

It is a geometric progression with first term 1 and common
ratio 3. The common ratio could be a Fraction and it might be
negative.

In general we can write a geometric progression as follows:

Geometric progression: a, ar, ar2, ar3 . . .

Where the first term a and the common ratio is r.

Some important results concerning geometric progressions
(g .p.) now follow:

The nth term of a g. p. is given by: ar(n-1)

The sum of the first n terms of a g. p. is Sn= a(1 − rn)/(1-r)
if r≠1

The sum of the terms of a geometric progression is known
as a geometric series.

If the common ratio in a geometric series is less than 1 in
modulus, (that is −1 < r < 1), the sum of an infinite number of
terms can be found. This is known as the sum to infinity, S1.

S1= a/ (1-r) provided − 1 < r < 1

IV. PERFORMENCE METRICS

There are different kind of parameter for evaluating the
performance of a system .These performance parameter are the
execution time that are evaluate for each thread and cpu
utilization.

A. Scalability of parallel algorithms

Increasing number of processor decreases efficiency with
fixed problem size. And increasing the amount of computation
per processor increases efficiency with fixed machine size. It
should possible to keep the efficiency fixed by increasing both
the size of the problem and the number of processor
simultaneously .Two Scalability metrics are used.

 Number of threads.

 Number of terms

B. Execution Time

Execution time is used to estimate the parallel execution
time for each thread to well utilize the processor is in solving
the problem.

C. CPU Utilization

CPU Utilization is needed to monitor via the system
monitor to determine whether or not it met the criteria
intended.

V. PARALLEL ALGORITHM FOR SUM OF GEOMETRIC

SERIES

STEP1: Initialize the variables

http://www.ijirct.org/

Volume 2 | Issue 1 ©2015 IJIRCT | ISSN: 2454-5988

 IJIRCT1601004 International Journal of Innovative Research and Creative Technology www.ijirct.org 22

STEP2: omp_set_num_threads()

// [function that set the maximum thread count at run time.]

STEP3: Set the initial time using omp_get_wtime() function.

STEP4: #pragma omp parallel and #pragma omp reduction

// [syntax of the openmp]

// [create a team of threads that run the code block in parallel]
[reduces the code complexity in parallel]

STEP5: #pragma omp sections

// [contains a set of sections and informs that they should
execute in parallel]

STEP6: #pragma omp section

// [This informs that the code block that should be executed by
a single thread and creation of section depend on the number of
threads]

STEP7: #pragma omp critical

// [A block in which only one thread may enter at a time]

STEP8: Assign the initial value to SUM variable

STEP9: Initializes the counter

STEP10: Calculates the TERM and adds with SUM

STEP11: Increment the counter by 1

STEP12: omp_get_thread_num()

// [Runtime function to return a Thread –ID]

STEP13: [END of Parallel Region]

STEP14: Prints the value of SUM

STEP15: STOP

VI. HARDWARE AND SOFTWARE

The Multicore processor specifications used in this work
are dual core and quad core and is describe in Table I.

TABLE I. DUAL CORE

Component Description

of processor core 2(Dual)

Processor Intel(R)core™2Duo CPU

 T6500 @2.10GHz

RAM 2GB RAM

System Type 32bit

TABLE II. QUAD CORE

Component Description

of processor core 4(Quad)

Processor Intel(R)core™i3-3110M CPU

 @2.40GHz 2.40GHz

RAM 4.00GB RAM

System Type 64 bit

The software required to perform the parallel process are
fedora 15 operating system and OMP parallel programming
model and system monitor for to check the CPU utilization of
the processor for performance measure or Windows visual
studio 2010 with OMP support.

The chart and data which is given here are from windows
visual studio 2010 with OMP support. Although Program has
been implemented and executed in both operating system.

VII. IMPLEMENTATION RESULT

After the execution of parallel program for the different
number of threads and for the different number of terms we
analyse the average execution time for each thread which is
given in following tables(P1=dual core processor,P2=Quad
core Processor).

A. The average execution time for each thread in 100

numbers of terms.

TABLE III. ANALYSE DATA FOR 100 TERMS

Number of Average Number of Average

thread in P1 Execution thread in Execution

processor time(in P1 time(in

 second) in P1 processor second)

 in P1

Serial(1) .071471 Serial(1) 0.025675

Parallel(2) 0.072766 Parallel(2) 0.038599

Parallel (4) 0.082612 Parallel (4) 0.031389

Parallel (8) 0.070805 Parallel (8) 0.031218

Parallel (16) 0.095551 Parallel(16) 0.036531

Parallel (32) 0.099105 Parallel(32) 0.048448

Fig. 1. Average Execution time for 100 terms.

B. The average execution time for each threads in 1000

number of terms

TABLE IV. ANALYZE DATA FOR 1000 TERMS

Number of Average Number of Average

thread in P1 Execution thread in Execution

processor time(in P1 time(in

http://www.ijirct.org/

Volume 2 | Issue 1 ©2015 IJIRCT | ISSN: 2454-5988

 IJIRCT1601004 International Journal of Innovative Research and Creative Technology www.ijirct.org 23

 second) in P1 processor second)

 in P1

Serial(1) 0.272775 Serial(1) 0.142927

Parallel(2) 0.382690 Parallel(2) 0.177757

Parallel (4) 0.354489 Parallel(4) 0.196054

Parallel (8) 0.465510 Parallel(8) 0.183831

Parallel (16) 0.483087 Parallel(16) 0.173315

Parallel (32) 0.484791 Parallel(32) 0.181677

 Processors with respective number of Threads

Fig. 2. Average Execution time for 1000 terms.

C. The average execution time for each threads in 10000

number of terms

TABLE V. ANALYZE DATA FOR 10000 TERMS

Number of Average Number of Average

thread in P1 Execution thread in Execution

processor time(in P1 time(in

 second) in P1 processor second)

 in P1

Serial(1) 1.206249 Serial(1) 1.039629

Parallel(2) 1.227454 Parallel(2) 1.044320

Parallel (4) 1.222430 Parallel(4) 1.122317

Parallel (8) 1.209286 Parallel(8) 1.151230

Parallel (16) 1.237629 Parallel(16) 1.122573

Parallel (32) 1.228563 Parallel(32) 1.090787

`

Fig. 3. Average Execution time for 10000 terms.

D. The average execution time for each threads in 100000

number of terms

TABLE VI. ANALYZE DATA FOR 100000 TERMS

Number of Average Number of Average
thread in P1 Execution thread in Execution

processor time(in P1 time(in
 second) in P1 processor second)
 in P1

Serial(1) 10.698792 Serial(1) 9.383602

Parallel(2) 10.726862 Parallel(2) 9.980090

Parallel (4) 10.682143 Parallel(4) 9.974948

Parallel (8) 10.583047 Parallel(8) 9.077937

Parallel (16) 10.598679 Parallel(16) 8.792485

Parallel (32) 10.868552 Parallel(32) 8.808827

Fig. 4. Average Execution time for 100000 terms.

E. Analyze Average Execution time for each thread for each number of terms.in Quad core

TABLE VII. ANALYZE DATA FOR EACH THREAD ON EACH TERM

Number Average Execution time for each number of thread

of term

1

2 4 8 16 32

100 .02565675 0.025930 0.038599 0.031389 0.031218 0.048448

http://www.ijirct.org/

Volume 2 | Issue 1 ©2015 IJIRCT | ISSN: 2454-5988

 IJIRCT1601004 International Journal of Innovative Research and Creative Technology www.ijirct.org 24

1000 0.142927 0.177757 0.196054 0.183831 0.173315 0.181677

10000 1.039629 1.044320 1.122317 1.151230 1.122573 1.090787

100000 9.383602 9.980090 9.974948 9.077937 8.792485 8.808827

F. Analyze Average Execution time for each thread for each number of terms in Dual core

TABLE VIII. ANALYZE DATA FOR EACH THREAD ON EACH TERM

Number Average Execution time for each number of thread

of term

1 2 4 8 16 32

100 .071471 0.072766 0.082612 0.070805 0.095551 0.099105

1000 0.272775 0.382690 0.34989 0.465510 0.483087 0.484791

10000 1.206249 1.227454 1.222430 1.209286 1.237629 1.228563

100000 10.698792 10.726862 10.682143 10.583047 10.598679 10.868552

VIII. CPU UTILIZATION

The main objective is to fully utilize the CPU to its utmost
potential. Therefore, CPU Utilization needs to be monitored via
the system monitor to determine whether or not it met the
criteria intended.

CPU Utilization in Dual core processor in percentage of
threads.

A. CPU Utilization in 1000000 terms for 2 threads

B. CPU Utilization in 1000000 terms for 4 threads

C. CPU Utilization in 1000000 terms for 8 threads

D. CPU Utilization in 1000000 terms for 16 threads

http://www.ijirct.org/

Volume 2 | Issue 1 ©2015 IJIRCT | ISSN: 2454-5988

 IJIRCT1601004 International Journal of Innovative Research and Creative Technology www.ijirct.org 25

E. CPU Utilization in 1000000 terms for 32 threads

IX. RESULT ANALYSIS AND DISCUSSION

Here we discuss the addition of Geometric Progression
series 1+1*2+1*4+……….+1*rn was making use of 2, 4,8,16
and 32 number of threads for two type of processor first dual
core and second quad core. It is observed that in starting when
we increase number of thread from 2 to 4 in dual core
processor execution time increases, but as we increase number
of threads above 4 execution time starts decreasing,. But 32
number of threads time taken is more than the time taken by 2,
4,8 and 16 threads. In quad core processor result is different as
we increase number of threads and number of terms execution
time increases but a little bit efficiency is noted down from 4 to
8 number of threads. After observation by the graph it is found
that.

 16 is the optimum number of threads for 100,
1000,10000,100000 cycles in dual core processor.

 8 is the optimum number of threads for 100,
1000,10000,100000 cycles in quad core processor.

In my experiment we divide Geometric Progression Series
into different sections, which give data level parallelism. I also
used reduction method for code optimization. Execution of
Geometric Progression Series on different number of threads
gives thread level parallelism. Best condition is when number
of threads are in power of 8. It is also observed that if it is
increase number of thread beyond number of core (for example
4) then it first complete 4 threads then start the execution for
other threads. CPU utilization is best when we use number of
threads 32.

CONCLUSION

In this work effect of parallelization on execution time was
studied, addition of Geometric progression was done, by using
threads. Thread is an independent smallest unit of processing
that can be scheduled by operating system. The problem was

divided into increasing number of threads. It was found that
upon increasing the number of threads (parallelization) time is
increasing. This is probability because of small configuration
of microcomputers which include desktop; laptop another
reason may be use of OpenMP which has very limited facility
of parallelization. Small time also spends in overhead
communication. It may be possible that on mini and mainframe
computer along parallel operating system and parallel compiler
upon increasing parallelization time may reduce. We conclude
that for best performance when number of threads are in power
of 8.

If any programs are running on quad core processor without
thread then it is as good as running a program on single core
computer. To make use of quad core computer he should used
4 threads in suitable environment like OpenMP or any other
equivalent.

FUTURE WORK

The future work can be computation may be made for other
series also. This may be extended to binomial series, sequential
series integration series another type of complex series like sine
series, cosine series etc.

REFERENCES

[1] D.S. Ruhela and R.N.Jat .” Complexity & Performance Analysis of
Parallel Algorithms of Numerical Quadrature Formulas on Multi Core
system Using Open MP” Volume 3 Issue 7 July, 2014 International
Journal Of Engineering And Computer Science.

[2] Sequences And Series [Online]
http://Ltcconline.Net/Greenl/Courses/103b/Seqseries/Seqser.Htmanizati
on” Tmh.As Retrieve On Date 10/01/15.

[3] [Online] http://Www.Wyzant.Com/Help/Math/Precalculus/Series_And_
Sequences. As Retive On Date 10/01/15.

[4] M. F Mridha, Mohammad Manzurul Islam, Syed Mohammad Oliur
Rahman. “ A New Approach of Performance Analysis of Certain Graph
Algorithms “International Journal of Advanced Research in Computer
and Communication Engineering Vol. 2, Issue 9, September 2013.

[5] Mr. Nagraj and Mr. Kumarasvamy,”Serial and Parallel Implementation
of Shortest Path Algorithm in Optimization Of Public Transport
Travel”,international jounal of computer science engineering and
information technoo.

[6] Abdulellah A. Alsaheel, Abdullah H. Alqahtani & Abdulatif M.
Alabdulatif “Analysis of parallel boyer moore String search algorithm
“Global Journal of Computer Science and Technology Hardware &
Computation Volume 13 Issue 1 Version 1.0 Year 2013.

[7] Mr. Sanjay Kumar Sharma and Dr. Kusum Gupta “Performance
Analysis of Parallel Algorithms on Multi-core System using OpenMP”,
International Journal of Computer Science, Engineering and Information
Technology (IJCSEIT), Vol.2, No.5, October 2012.

[8] Pranav Kulkarni and Sumit Pathare “Performance Analysis of Parallel
Algorithm over Sequential using OpenMP” IOSR Journal of Computer
Engineering (IOSR-JCE) Volume 16, Issue 2, Ver. X (Mar-Apr. 2014)

[9] Pranav Kulkarni, Sumit Pathare “Performance Analysis of Parallel
Algorithm over Sequential using OpenMP” IOSR Journal of Computer
Engineering (IOSR-JCE) e-ISSN: 2278-0661, p- ISSN: 2278-
8727Volume 16, Issue 2, Ver. X (Mar-Apr. 2014).

http://www.ijirct.org/

