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Abstract—The diminished-one modulo 2ⁿ+1 addition is an 

important arithmetic operation for a high-performance residue 

number system. This paper, is an attempt to implement a new 

circular-carry-selection (CCS) technique for modulo 

2ⁿ+1addition in the diminished-one number domain. The 

architecture design of CCS modular adder is simple and regular 

for various bit-width inputs. 
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I.  INTRODUCTION 

The proposed CCS diminished-one modulo adder has been 
introduced and developed to derive the most compromising 
design in terms of area, delay and power. For a large bit-width 
requirement, this CCS modular adder is realized by the 
combination of CCS addition blocks, CCG and MUX to lead 
into the simple and efficient. The VLSI implementation of CCS 
modular adder indeed has better area-delay and delay-power 
performances over conventional designs. 

II. DIMINISHED ONE MODULO 2ⁿ+1 ADDER 

A. Residue number system 

Residue number system (RNS) is a non-weighted number 
system which exhibits a parallel carry-free arithmetic feature in 
digital signal processing. RNS is used in the implementation of 
fast arithmetic and fault-tolerant computing. Three properties 
of RNS make them well suited for these. The first is absence of 
carry-propagation in addition and multiplication, carry-
propagation being the most significant speed-limiting factor in 
these operations. The second is, since the residue 
representations carry no weight-information, an error in any 
digit-position in a given representation does not affect other 
digit-positions. And ¬¬ third is that there is no significant-
ordering of digits in an RNS representation, which means that 
faulty digit-positions may be discarded with no effect other 
than a reduction in dynamic range. 

A great deal of computing now takes place in embedded 
processors, such as those found in mobile devices, and for 
these high speed and low-power consumption are critical; the 
absence of carry-propagation facilitates the realization of high-
speed, low-power arithmetic. Also, computer chips are now 
getting to be so dense that full testing will no longer be 
possible; so fault-tolerance and the general area of 
computational integrity have again become more important. 
Lastly, there has been progress in the implementation of the 
difficult arithmetic operations. In any case, RNS is extremely 

good for many applications such as digital signal processing, 
communication engineering, computer security (cryptography), 
image processing, speech processing, and transforms in which 
the critical arithmetic operations are addition and 
multiplication. 

In an RNS based application, every number X is 
represented by a sequence of residues X1, X2, . . .  XM., where Xi 
is X mod Pi , Pi  should be 1 ≤ i ≤ M, the base of the RNS 
should be pair wise relative prime integers. A two operand 

RNS operation, suppose  

(Z1, Z2, . . .  ZM)=( X1, X2, . . .  XM) (Y1, Y2, . . .  YM), 

Zi =(Xi Yi)mod pi 

For most RNS applications  is either addition, 
subtraction, or multiplication. Since the computation of Zi only 
depends upon Xi, Yi, and pi, each Zi is computed in parallel in 
a separate arithmetic unit, often called channel. Moduli choices 
of the form {2n-1, 2n, 2n +1} have received significant attention 
because they offer very efficient circuits in the area x time. 
 Addition in such systems is performed using three 
channels. Because they have efficient combinational convertors 
to and from the binary system. 

B. Modulo 2 ⁿ+1 Arithmetic 

Many moduli sets such as {2n-1, 2n, 2n +1}, {2n-1, 2n, 2n 
+1, 22n +1}, and              {2n-1, 2n, 2n +1, 2n-1 +1}, etc. are 
frequently utilized for designing successful RNS-based DSP 
applications. Among these moduli sets, the arithmetic in 
modulo 2ⁿ-1 type or 2ⁿ type channel only handles ‘n’ bit 
operands and the corresponding modulo operation is easy to 
design. On the contrary, the arithmetic in modulo 2ⁿ+1 type 
channel computes ‘n+1’ bit operands and its modulo operation 
is more complex to implement, such that it mainly dominates 
the performance of the whole RNS system in terms of area, 
delay and power. Therefore, the 2ⁿ+1 type modulus is the 
significant and complicated modular element in many moduli 
sets. 

   In this paper the focus is on the design subject of an 
efficient modulo 2ⁿ+1 addition. Given two ‘n+1’ bit inputs A 
and B in the range [0, 2ⁿ], the modulo 2ⁿ+1 addition is defined 

By <A+B> 2ⁿ+1 .The diminished-one number arithmetic 
was adopted to design an efficient modulo 2ⁿ+1 adder. For a 
diminished-one modulo adder, the inputs A and B are 
decreased by one to obtain diminished-one data A*=A-1 and 
B*=B-1 which have n-bit width. The representation of 0 is 
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treated in a special way. Therefore, the diminished-one modulo 
2ⁿ+1 addition can be designed by n-bit adder and modulo 
function. This leads to the resulting modular adder be suitable 
for constructing a high-speed RNS addition. 

Several architectures have been proposed for modulo 2ⁿ + 1 
arithmetic components for each of the two representations, 
including parallel-adders, multi-operand adders and residue 
generators. 

 For modulo (2ⁿ +1) addition, the diminished one number 
system is often used, where the number A is represented by 
Aا= A-1 and the value 0 is not used or treated separately (i.e., 
requires an additional zero indication bit which is omitted here) 

Ordinary addition in this number system looks as follows: 

A+B=S 

(A1+ا)+(B1+ا)=S1+ا 

Aا+B1+ا=Sا 

The sum of a diminished-1 modulo adder is derived 
according to the following cases: 

 When none of the input operands is zero (az, bz ≠ 0) 
their number parts Aا and Bا are added modulo 2n +1. 
This operation as discussed in the following, can be 
handled by CLA. 

 When one of the two inputs is zero the result is equal to 
the non-zero operand. 

 When both operands are zero the result is zero. 

In any case that the result is equal to 0 (cases 1 or 3), the 
zero-indication bit of the sum needs to be set and the number 
part of the sum should be equal to the all-zero vector. 
According to the above, a true modulo addition in a 
diminished-1 adder is needed only in case 1, while in the other 
cases the sum is known in advance. 

When none of the input operands is zero, az, bz ≠1, the 
number part of the diminished-1 sum is derived by the number 
parts Aا and Bا of the input operands as follows: 

(Aا+B1+ا) mod (2ⁿ+1) = Aا+B1+ا- (2ⁿ+1)  is 

= (Aا+Bا) mod 2ⁿ, if Aا+B2≤ 1+اⁿ 

 =Aا+B1+ا , otherwise 

The sum Aا+Bا is incremented if Aا+B2 > 1+اn, i.e., if cout 
= 0. Thus, modulo (2ⁿ+1) addition can be realized by the CCS 
in DS-CLA with cin = cout (i.e., with an inverter in the carry 
feedback path) 

(Aا+B1+ا) mod (2ⁿ+1) = (Aا+Bا+Cاout) mod 2ⁿ 

The diminished one number representation, however, often 
requires the conversion from and to the normal number 
representation using incrementation / decrementation, which 
might be too expensive when compared to its advantages. 

III. IMPLEMENTATION CONVENTIONAL 2^16+1 ADDER 

USING  CLA TECHNIQUE 

Here the modulo 2ⁿ + 1 addition of A and B, hereafter 
denoted by |A+B|2ⁿ+1,  

Where A*=an-1*,…,a1*, a0*    and B*=bn-1*,…,b1*, b0*   
are two (n + 1)-bit binary numbers in the range [0, 2n], we 
have that. 

|A+B |2ⁿ + 1 = A + B – (2ⁿ + 1), if  A + B ≥  (2ⁿ + 1) 

 |A+B |2ⁿ + 1 =A + B,                  otherwise  

 

Fig. 1. 2^16+1 Adder Using Carry Look Ahead Adder Technique   On 

Synopsis® Design-Vision. 

In this conventional CLA, the area and the power 
consumption were found to be much larger and also the logic 
elements used here is quite large. So, introducing a new CCS 
technique for diminished one modulo 2ⁿ+1 adder. 

IV. IMPLEMENTATION OF THE PROPOSED DIMINISHED ONE 

MODULO 2ⁿ+1  ADDER USING CCS TECHNIQUE 

Assume that two -bit diminished-one operands are 

A* =A-1 and B*=B-1 ie, 

A-1=an-1*,…,a1*, a0*    and B-1=bn-1*,…,b1*, b0*    

The sum derived by performing modulo 2ⁿ+1 addition of 
A* and B* can be changed into the uncomplicated function 
with performing modulo 2ⁿ addition as the following 
expression: 

S* = <A*+B*+(Cn-1) ⃗> 2ⁿ 

Where Cn-1 is regarded as an original carry-out bit of 
(A*+B*) .Denote the carry generate term and the carry 
propagate term as  

gi* = ai*.bi*  

pi* = ai*  bi*      where   stands for XOR function.  

According to CLA function, the carry term of Ci* is 
derived by 

Ci*=gi*+ 

 

for i=0,. . . ,n-1.  

where c*-1  is the carry-in bit. Based on CCS technique, we 
set  c*-1=(Cn-1) ⃗ 

The Boolean function of each sum bit can be expressed as 
follows: 
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Si*  = Ci-1* Pi*=(gi-1* + 

) P* 

 Where  Cn-1 =g*n-1 +   Since є {0,1}. 

we have,  si*={s*i,1=(g*i-1 + 

,    

  if cn-1=si*={    s*i,0  =(g*i-1 + 

,                                  if cn-1=1 

 

Here a new circular-carry-selection (CCS) technique is 
presented to design an efficient diminished-one modulo adder. 
The proposed CCS modular adder simply consists of dual-sum 
carry look-ahead (DS-CLA) adder, circular-carry generator 
(CCG) and multiplexer (MUX). The DS-CLA adder is 
designed to generate two different modulo sums in parallel. 
The carry-out bit computed by CCG is then used to circularly 
control the MUX for obtaining the correct modulo result. 

We can easily design a DS-CLA adder to produce S*i,1 and 
S*i,0 two sums and since they have the same term  

  gi-1* +  

.ie, they can share the circuit from the view point of 
hardware design. At the same time, Cn-1 generated by the CLA 
function is circularly used to control MUX for getting the 
correct outputs S*’s. The block diagram of CCS diminished-
one modulo 2ⁿ+1 adder is shown in Fig. 2, which is simple and 
regular. Fig. 2 shows the detailed logic design for CCS 
diminished-one modulo 2^4+1 adder. 

 

Fig. 2. Block Diagram Of CCS Diminished One Modulo 2ⁿ+1 Adder. 

A. Implementation Of Modulo 2^4+1 Adder Using CCS 

Technique 

Here will demonstrate one example. 

Suppose n = 4   

A = 6,       

B = 3, 

A∗ = 5 =0101,    

B∗ = 2 = 0010, 

S* = <A*+B*+> 2ⁿ =(5+2+1)mod(16)=8=10002. 

The carry propagate term p∗ and the carry generate term 
g∗c can then be obtained as  

p∗ = 0111    

g∗ = 0000  

Then the modulo sum is computed with the help of Cn−1. 
Here Cn−1=C3=0;  

The modulo sum is S*i,1  

S*3,1=(g2*+p2*g1*+p2*p1*g0*+p2*p1*p0*) p3*=1 

0=1 

S*2,1=(g1*+p1*g0*+p1*p0*) p2*=1 1=0 

S*1,1=(g0*+p0*) p1*=1 1=0 

S*0,1=p0*=0 

S*=1000 

 

Fig. 3. Logic Circuit Of CCS Diminished One Modulo 2^4+1 Adder. 

B. Implementation of the low power with reduced area 

modulo 2^16+1 adder using ccs technique 

In order to speed up the CCS modular adder for the large 
dimension of  ‘n’ , we  partition the n-bit CCS modular adder 
in to m ‘r ‘bit CCS addition blocks and a fast CCG where  n= 
m x r . Fig. 4 illustrates the general (m x r)-bit CCS modular 
adder architecture. Both input data are divided into block 
inputs are: 

A * = {Am-1*,…, A0*}  and B * = {Bm-1*,…, B0*}     

where, 

At* = a* (t+1) r-1,…, a* tr+1 a* t r and Bt* = b* (t+1) r-
1,…, b* tr+1 b* t r 

For t = 0, 1, 2, ……,(m-1). 

The block sum is St* = s* (t+1) r-1,…, s* tr+1 s* t r       

derived   by A*t  +B* t  + k* t-1 
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V. RESULTS 

Design view On Synopsis® Design-Vision : 

 

Fig. 4. CCS Diminished One Modulo 2^16+1 Adder On Synopsis® Design-

Vision. 

 

Fig. 5. Modified CCS Diminished One Modulo 2^4+1 Adder On Synopsis® 

Design-Vision. 

TABLE I.  COMPARISON BETWEEN DIMINISHED ONE MODULO 2^16+1 

ADDER  USING CLA  AND WITH  CCS 

 AREA  

(cells) 

POWER 

(µW) 

DELAY     

(nSec) 

Modulo 

2^16+1 
Using CLA 

 

 

184 

 

33.3226 

 

13.08 

Modulo 
2^16+1 

Using 4x4 

CCS 

 

 

83 

 
 

11.1618 

 
 

17.58 

TABLE II.  COMPARISON BETWEEN  DIMINISHED ONE MODULO 2^4+1 

ADDER  WITH MODIFIED DIMINISHED ONE MODULO 2^4+1 ADDER( USING 

CCS) 

 AREA(cells) POWER(µW) DELAY(nSec) 

Modulo 

2^4+1 
Adder 

 

 

       46 

 

    9.4128 

 

       9.15 

Modified 

 
        39      6.47        7.96 
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