
Volume 1 | Issue 4 ©2015 IJIRCT | ISSN: 2454-5988

 IJIRCT1201078 International Journal of Innovative Research and Creative Technology www.ijirct.org 387

Designing And Implementation Of A Tool For

Java Code Optimization

Rahma Saleem Alsawaf
Software engineering Department

College of computer sciences and mathematical

Mosul, Iraq

Dr.AsmaaYaseen Hamo

Software engineering Department

College of computer sciences and mathematical

Mosul, Iraq

Abstract—this research contains a full description of

designing and implementation of a Java Code Optimization Tool

(JCOT).This tool is introduced to the programs who's the tools

user it enables him to scan his code and show the segments that

may be optimized according to reducing execution time. The tool

also given the user a " severity level " that helps user to decide

applying the optimization or not.

Keywords— JCOT

I. INTRODUCTION

When writing Java code it can be easy to make simple
mistakes that seem harmless on the surface but, as the
application grows larger, it can show themselves to be slow,
resource intensive processes that could use a tune-up. So it is
important to optimize the code [1]. Optimization is the process
of transforming a piece of code to make it more efficient (either
in terms of time or space) without changing its output or side-
effects. The only difference visible to the code’s user should be
that it runs faster and/or consumes less memory [2]. Code
optimization can be divided into three distinct types, which are
based on the needs of the developer: Maintainability, Size and
Speed. Maintainability optimization is performed to help make
code more manageable in the future. This type of optimization
is usually geared toward the structure and organization of code
rather than modifications to the algorithms used in the code.
Size optimization, which involves making changes to code that
result in a smaller executable class file. The cornerstone of size
optimization is code reuse, which comes in the form of
inheritance for Java classes. Speed optimization is without a
doubt the most important type of optimization when it comes to
Java programming. Speed optimization includes all the
techniques and tricks used to speed up the execution of code.
Considering the performance problems inherent in Java, speed
optimization takes on an even more important role in Java than
it does in other languages such as C and C++ [3].

II. LITERATURE REVIEW

In (2008) Kevin Williams, etc., writes a paper that
presented analysis of existing interpreter optimization
techniques on the Cell BE Processor and introduced novel
optimizations made possible by the architectural features of the
Cell BE SPE [8].

Also in (2008) Huib van den Brink discussed the
optimization techniques used in the Java HotSpot Compiler, in
order to execute the program code as fast and efficient as
possible [9].

In (2010) Peter Sestoft made experiments show that there is
no obvious relation between the execution speeds of different
software platforms, even for the very simple programs studied
here: the C, C# and Java platforms are variously fastest and
slowest [10].

In (2012) Pawan Nagar and Nitasha Soni presents a basic
framework that allows the application programmers to
recognize the constraints of application programs in instruction
scheduling [11].

Also in (2012) Hiroshi Inoue and Toshio Nakatani
presented a techniques to identify the instructions and objects
that frequently cause cache misses without using the HPM of
the processor and then showed its effectiveness in compiler
optimization using two examples. The key insight is that the
cache misses are often caused by pointer dereferences in hot
loops in the Java programs [12].

III. REQUIREMENTS FOR THE JAVA CODE OPTIMIZATION

TOOL (JCOT)

Before describing the algorithm for JCOT, the functional
and non-functional requirement of it is specified as functional
shown below.

A. Functional requirement for JCOT

Functional requirement is a statements of services that the
system should provide. How the system should react to
particular inputs and how the system should behave in
particular situations [5].

 It must contain one or more techniques for the
optimization to make the tool work in correct way.

 It needs from the user to specify the name of the saved
file to work on it and it should be free of mistakes or
compilation errors.

 The tool must be able to recognize the state that fines in
the file to work with it.

 The tool must work continues without error.

 The tool must show the severity for each state of the
optimization to enable the user to know the speed
increased if it is used.

 The tool must save the result file after optimization to
enable the programmer to use it later.

 The result file should work correctly.

http://www.ijirct.org/

Volume 1 | Issue 4 ©2015 IJIRCT | ISSN: 2454-5988

 IJIRCT1201078 International Journal of Innovative Research and Creative Technology www.ijirct.org 388

 The tool interface must enable the user to select from
apply optimization process or not and save the file
before process optimization if the user select no.

B. Non-Functional requirement for JCOT

Nonfunctional requirement is Constraints on the services or
functions offered by the system such as timing constraints,
constraints on the development process, standards, etc. [5].

 When designing tool interface must follow the
designing document that need the tool interface must be
easy to work by the user.

 The tool must be able to work without installation of
java language kit for easy used by the user.

 The tool must have graphic interface to work with it by
the user.

 The tool should be compatible with Windows in
browsing folder and select the specific file.

 Should display to the user the location for the code
segments that contain the optimization techniques and
process it.

 Should display the code after apply optimization.

 Must display the severity curve for the optimization
techniques to enable the user to know the details about
it.

IV. DESIGNING THE JAVA CODE OPTIMIZATION TOOL

(JCOT)

The work starts by selecting the code to work with it and
segments it according to optimization techniques that
embedded for designing the tool and displays the code segment
to the user with ask you for accept doing the optimization
process on that segment if the user accept, the tool apply the
optimization process on that segment and display it with the
severity curve to enable the user to know detail about that.

As mention in [4], the optimization techniques for java
code is specified. The influence of every techniques on the time
is calculated as shown in the table below and also the following
four techniques:

TABLE I. COMPARISON OF EXECUTION TIME OF OPTIMIZATION

TECHNIQUES

Techniques name

Time before

optimize the

code (in

millisecond)

Time after

optimize the

code(in

millisecond)

Use String length to compare

empty string variables

874 89

Avoid invoking time consuming
methods in loop

1818 93

Avoid empty if 67 59

Avoid unnecessary if 60 59

Avoid unnecessary parentheses 67 59

Avoid using Message Format 735 93

Avoid new with string 48 2

Avoid null check before

instance of

4 3

Do not create instances just to
call get Class on it

9 2

Reduce switch density

5 4

Avoid new Integer to String 3752 3146

Avoid passing primitive integer

to Integer constructor

992 90

Avoid passing primitive long to

Long constructor

865 727

Avoid passing primitive char to

Character constructor

818 135

Avoid unnecessary substring 50 9

Avoid equality with Boolean 126 100

Avoid instantiation of Boolean 86 11

Use single quotes when

concatenating character to String

1124 960

Avoid multi-dimensional arrays 22 21

Use String instead String Buffer

for constant strings

422 199

Avoid creating double from string 263 135

Always use right shift operator for

division by powers of 2

7 2

Use shift operators 2 1

Avoid using exponentiation 283

5

Moving Secondary Boolean
Operation Outside The For Loop

893 892

Optimize Declarations 2 1

In for loops, countdown rather

than up

98 97

Use operator=, rather than just
the operator

85 80

Techniques 1: Loop invariant code motion

When using absolute function inside the loop statement and
don’t depending on it and don’t use inside the loop in another
statements leading to increase the execution time , so must
movie it outside the loop statement if not affect the program
output [6].

Example:

Without optimization

class test

{

 public void method(int x, int y, int[] z)

 {

 for(int i = 0; i < z.length; i++)

 {

 z[i] = x * Math.abs(y);

 }

 }

}

With optimization:

class test
{
 public void method(int x, int y, int[] z)
 {
 int t1 = x * Math.abs(y);

http://www.ijirct.org/

Volume 1 | Issue 4 ©2015 IJIRCT | ISSN: 2454-5988

 IJIRCT1201078 International Journal of Innovative Research and Creative Technology www.ijirct.org 389

 for(int i = 0; i < z.length; i++)
 {
 z[i] = t1;
 }
 }
}

Techniques 2: Avoid consecutively invoking String Buffer
append with string literals

When concatenating string to another one must let to don’t
replay the concatenating statement and needlessness the only
one of it to seep the execution time.

Usage Example:

Without optimization:

public class Test

{

 private void fubar()

 {

 StringBuffer buf = new StringBuffer();

 buf.append("Hello").append(" ")

 .append("World");

 }

}

With optimization:

public class Test

{

 private void fubar()

 {

 StringBuffer buf = new StringBuffer();

 buf.append("Hello World");

 }

}

Techniques 3: Avoid duplication of code

When using condition statement must let to not replay the
instruction used inside it.

Usage Example:

Without optimization:

public class test

{

 public void method()

 {

 int x = getValue();

 if(x > 10)

 {

 int j = i + 10;

 int k = j * 2;

 System.out.println(k);

 }

 else if(x < 20)

 {

 int j = i + 10;

 int k = j * 2;

 System.out.println(k);

 }

 }

}

With optimization:

public class test

{

 public void method()

 {

 int x = getValue();

 if(x > 10) || (x < 20)

 {

 int j = i + 10;

 int k = j * 2;

 System.out.println(k);

 }

 }

}

Casting process is the operation that modify the contain of
any parameters from the type define for it to any type as
needed. Such that the parameter x have the return type integer
and need that in type of flout to continue the other operation
can use casting. So must avoid replay use it if it is unnecessary
because lead to need extra time for execution the program [7].

Usage Example:

Without optimization:

class test

{

 public Object method()

 {

 String str = "AppPerfect";

 Object obj = (Object)str;

 return obj;

 }

http://www.ijirct.org/

Volume 1 | Issue 4 ©2015 IJIRCT | ISSN: 2454-5988

 IJIRCT1201078 International Journal of Innovative Research and Creative Technology www.ijirct.org 390

}

With optimization:

class test

{

 public Object method()

 {

 String str = "AppPerfect";

 Object obj = str;

 return obj;

 }

}

TABLE II. COMPARISON OF EXECUTION TIME OF FOUR NEW

OPTIMIZATION TECHNIQUES

Techniques name

Time before

optimize the

code (in

millisecond)

Time after

optimize the

code(in

millisecond)

Loop invariant code motion

2481 1280

Avoid consecutively invoking

String Buffer append with

string literals

10788 5522

Avoid duplication of code 367 61

Avoid unnecessary casting 4 3

Algorithm for the Java Code Optimization Tool (JCOT)

JCOT works as in the following algorithm

Step 1: Choose one project (file) written in java language to
read the code inside it and use to applying optimization on it.

Step2: Repeat.

Step 2.1: Read a code segment and match it according to
optimization techniques.

Step 2.2: On the screen give the both codes (before the
optimization and after optimization).

Step 2.4: Wait for user to select applying optimization or
not.

Step 2.5: If user selects yes change the segment and store it
in the new file.

Step 2.3: show the severity curve for the code in the
severity with appropriate long and color.

Step 3: until end of file

V. RESULT

Now having the JCOT and ready to use after following the
working steps and gathering the benefits from it.

Steps for working with JCOT:

 The programmer open the tool icon (without needing to
install the java environment) and see the opening
window for the JCOT as shown in figure (1-1).

 Clicking the enter bottom in the primary window will
move the user to operational window as show in the
figure (1-2).

 User should select a file to be optimized by pressing the
browse bottom, the massage window appear and know
the user to select the file as the same figure (1-3), after
press the ok bottom in the massage window the open
window appear to the user to select the file in where
you store in your computer as show in the figure (1-4).

 The programmer must select the read bottom in the
same window to read and segment the code then press
the view bottom to view the code segment then the user
must select from applying optimization via optimization
bottom or not in no bottom if the user select
optimization the JCOT take the code segment before
optimization.

 The JCOT enable the programmer to know the severity
of the techniques by show the colors indexing to that
such that red color show the techniques accelerate the
execution a very large margin and so on changes the
color that up to yellow color that means less affect in
speed of execution . As show in the figure (1-6).

 The programmer can choose out of operational window
by press the back bottom and return to the primary
window , in first window the programmer choose the
exit to close the tool and return to desktop of the
computer.

Fig. 1. Primary window for the JCOT.

http://www.ijirct.org/

Volume 1 | Issue 4 ©2015 IJIRCT | ISSN: 2454-5988

 IJIRCT1201078 International Journal of Innovative Research and Creative Technology www.ijirct.org 391

Fig. 2. Operational window for the JCOT.

Fig. 3. Massage window.

Fig. 4. Opening file window.

Fig. 5. Operational window for JCOT after select the file.

The programmer must select the read bottom in the same
window to read and segment the code then press the view
bottom to view the code segment then the user must select
from applying optimization via optimization bottom or not in
no bottom if the user select optimization the JCOT take the
code segment before optimization.

The JCOT enable the programmer to know the severity of
the techniques by show the colors indexing to that such that red
color show the techniques accelerate the execution a very large
margin and so on changes the color that up to yellow color that
means less affect in speed of execution . As show in the figure
(1-6).

The programmer can choose out of operational window by
press the back bottom and return to the primary window, in
first window the programmer choose the exit to close the tool
and return to desktop of the computer.

CONCLUSION

JCOT enables the java programmer to optimize the
execution time of his/her programs. Also it gives his/her the
ability to skip optimization if wonted. The severity of
commends is triangulated by color and long to give the user
Anne impression. JCOT follows windows for compatibility.

Fig. 6. Working with JCOT.

REFERENCES

[1] Michael Dorf ,(2012) , "5 Easy Java Optimization Tips " ,

http://www.learncomputer.com/java-optimization-tips .

[2] Maggie Johnson,(2008) ,"Code Optimization" ,Handout 20.

[3] Guihot, H. (2012). Optimizing Java Code. Pro Android Apps
Performance Optimization, Springer: 1-31.

[4] Hamo Asmaa and Alsawaf Rahma,(2014)," Estimation Benefit of Java
Optimization Techniques", International Journal of Enhanced Research
in Science Technology & Engineering, Vol. 3 Issue 5, pp: (151-162).

[5] "Software Requirements1",2004, CS2 Software Engineering note 2.

[6] Java Performance Tunning by Jack Shirazi .

[7] http://www.javaworld.com/javaworld/jw-12-1999/jw-12-
performance.html .

[8] Kevin Williams1,Albert Noll2,Andreas Gal3 and David Gregg1 ,(2008)
, "Optimization Strategies for a Java Virtual Machine Interpreter on the
Cell Broadband Engine"1Trinity College Dublin, Dublin, Ireland,2ETH
Zurich, Zurich, Switzerland. 3University of California, Irvine, CA, USA.

[9] Huib van den Brink ,(2008), "The current and future optimizations
performed by the Java HotSpotCompiler" ,Institute of Information and
Computing Sciences, Utrecht UniversityP.O. Box 80.089, 3508 TB
Utrecht, The Netherlands.

http://www.ijirct.org/

Volume 1 | Issue 4 ©2015 IJIRCT | ISSN: 2454-5988

 IJIRCT1201078 International Journal of Innovative Research and Creative Technology www.ijirct.org 392

[10] Peter Sestoft ,(2010) ,"Numeric performance in C, C# and Java",IT
University of CopenhagenDenmark,Version 0.9.1 of 2010-02-19.

[11] Tony Sintes ,(2002) ,"The String class's strange behavior explained",
http://www.javaworld.com /article/2077355/core-java/don-tbe-strung-
along.html.

[12] Hiroshi Inoue and Toshio Nakatani ,(2012) ,"Identifying the Sources of
Cache Misses in Java Programs Without Relying on Hardware Counters
",© ACM, 2012. This is the author's version of the work.

http://www.ijirct.org/

