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Abstract—Controllers are widely used in power industrial 

field to control system because wide range of the tuned 

parameter. There are several methods which are used to tune the 

controller parameters. They are categorized into two types 

known as classical methods and modern methods. This paper 

presents the design of controller to tuned by the one of the 

modern algorithm techniques i.e. Particle Swarm Optimization 

(PSO). In this paper the use of PSO method tuned the PID 

parameter to make them more general and to achieve the steady 

state error limit, also to improve the dynamic behavior of the 

system. The performance and design criteria of automatic 

selection of controller constants are discussed below. 
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I.  INTRODUCTION 

PID controller consists of Proportional, Integral and 
Derivative gains. The PID feedback control system is 
illustrated in Fig. 1 where r, e, y are respectively the reference, 
error and controlled variables. Where Kp is proportional gain, 
Ki is integral gain and Kd is derivative gain.  

 In the diagram of Fig.1, G(s) is the plant transfer function 
and C(s) is the PID controller transfer function that is given as: 

 

 

Where Kp ,Ki, Kd parameters of the PID controllers that 
are going to be tuned using BF-PSO. 

II. PERFORMANCE INDICES 

Quantification of system performance is achieved through a 
performance index. The performance selected depends on the 
process under consideration and is chosen such that emphasis 
is placed on specific aspects of system performance. 
Furthermore, performance index is defined as a quantitative 
measure to depict the system performance of the designed PID 
controller. Using this technique an ‘optimum system’ can often 
be designed and a set of PID parameters in the system can be 
adjusted to meet the required specification. For a PID- 
controlled system, there are often four indices to depict the 
system performance ISE, IAE, and IATE. They are defined as 
follows: 

Integral square error defined as the error of an output, 
squared and added (integrated) over continuous time is used to 
measure system performance in applications of optimal control 
and estimation. 

 

Another index is the Integral of the Absolute magnitude of 
Error (IAE) which is the mode of the error for providing better 
stability to the system which can be written as: 

 

The third one is the ITAE which is used to minimize the 
large errors in the system defined as the integration of the 
absolute of error with respect to time. Mathematical expression 
of ITAE is given by 

 

http://www.ijirct.org/


Volume 1 | Issue 2                                                                                                        ©2015 IJIRCT | ISSN: 2454-5988 

 

 IJIRCT1201040 International Journal of Innovative Research and Creative Technology   www.ijirct.org 188 
 

The last one is the ITSE it is also minimized the large error. 
It is defined as the integral of the absolute square error or to 
integrate the large error to minimize the unstable condition. 

III. OVERVIEW OF PSO ALGORITHM 

PSO is optimization algorithm based on evolutionary 
computation technique. The basic PSO is developed from 
research on swarm such as fish schooling and bird flocking. 
After it was firstly introduced in 1995, a modified PSO was 
then introduced in 1998 to improve the performance of the 
original PSO. A new parameter called inertia weight is added. 
This is a commonly used PSO where inertia weight is linearly 
decreasing during iteration in addition to another common type 
of PSO which is reported by Clerk. The later is the one used in 
this paper. In PSO, instead of using genetic operators, 
individuals called as particles are “evolved” by cooperation and 
competition among themselves through generations. A particle 
represents a potential solution to a problem. Each particle 
adjusts its flying according to its own flying experience and its 
companion flying experience. Each particle is treated as a point 
in a D-dimensional space. The ith particle is represented as 
XI=(xi1,xi2,…,xiD). The best previous position (giving the 
minimum fitness value) of any particle is recorded and 
represented as PI=(pi1,pi2,…,piD), this is called pbest. The 
index of the best particle among all particles in the population 
is represented by the symbol g, called as gbest. The velocity for 
the particle i is represented as VI= (vi1,vi2,…,viD). The 
particles are updated according to the parameters of the PSO. 

Vj(i) =vj,1(i);vj,2(i);......vj,k(i); .....; vj,d(i)] 

 

IV. BACTERIAL FORAGING OPTIMIZATION 

Introduction Based on the research of foraging behaviour of 
E.colli bacteria Kevin M.Passino and Liu exploited a variety of 
bacterial foraging and swarming behaviour, discussing how to 
connect social foraging process with distributed non-gradient 
optimization. In the bacterial foraging optimization process 
four motile behaviors are mimicked: 

A. CHEMOTAXIS 

A chemotactic step can be defined as a tumble followed by 
a tumble or a tumble followed by a run lifetime.To represent a 

tumble a unit length random direction, (j), is generated ; this 
will be used to define the direction of movement after a tumble. 
In particular  

i(j+1,k,l) = i(j,k,l) + C(i)* (j) 

Where i(j,k,l) represents the ith bacterium at jth 
chemotactic, kth reproductive and lth elimination and dispersal 
step.C(i) is the size of the step taken in the random direction 
specified by a tumble(run length unit). 

B. SWARMING 

E.Colli cell scan cooperatively self-organize into highly 
structured colonies with elevated environmental adaptability 
using an intricate communication mechanism. Overall, cells. 

C. REPRODUCTION 

The least healthier bacteria die and the other each healthier 
bacteria split into two new bacteria each placed in the same 
location. 

D. ELIMINATION AND DISPERSAL 

It is possible that in the local environment, the lives of a 
population of bacteria changes either gradually (eg, via 
consumption of nutrients) or suddenly due to some other 
influence. Events can occur that all the bacteria in a region are 
killed or a group is dispersed into a new part of the 
environment. They have the effect of possibly destroying the 
chemotactic progress, but they have also the effect of assisting 
the chemotactic process, since dispersal may place bacteria 
near good food sources. From a board perspective, elimination 
and disposal are parts of the population level long distance 
motile behavior. 

 

V. SIMULATION AND RESULTS 

Functions are used for designing PID controller ISE, IAE, 
ITAE and ITSE .We set the following parameters  
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Dimension of search space =3;  

The number of bacteria =10;  

Number of chemotactic steps =10;  

Limits the length of a swim =4;  

The number of reproduction steps =4;  

 

The number of elimination-dispersal              events =2;  

The number of bacteria reproductions (splits) per 
generation =s/2;  

The probability that each bacteria will be 
eliminated/dispersed =0.25;  

c(:,1)=0.5*ones(s,1); the run length.  

 

We use the following PSO parameters  

C1=1.2;  

C2= 0.5;  

W=0.9; 

S 
no. 

n α β Kp Kd Mp% Ts Tr 

1 50 10 5 0.96 0.854 22.53 9.275 1.484 

2 50 10 5 0.88 0.672 8.178 8.317 1.699 

 

The response in Figure shows that the comparison of PSO 
and BFO when the number of iteration is 50 and alpha =10 and 
beta =20 in such a condition the output response of the system 
gives the value of maximum overshoot, rise time, settling time, 
and also the value of the gain i.e. the proportional gain and the 
integral gain. 

 

S 
no. 

n α β Kp Kd Mp% Ts Tr 

1 50 10 10 0.96 0.85 22.53 9.27 1.482 

2 50 10 10 0.88 0.67 8.17 8.31 1.699 
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When n=50 (i.e. number of iteration denoted by generation) 
in this case considering the value of Alpha to be 10 and Beta to 
be 10. From the figure it is also clear that the maximum 
overshoot and settling time of BFO is greater than that of PSO, 
and the rise time is smaller than that of PSO. 

 

S 
no. 

n α β Kp Kd Mp% Ts Tr 

1 50 10 10 0.74 0.66 0.663 7.038 2.054 

2 50 10 10 0.84 0.77 2.343 8.118 1.822 
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Comparison of PSO and BFO when n=50 alpha=10 beta = 10

 

 

With PSO

With BFO

 

When n=50 (i.e. number of iteration denoted by generation) 
in this case considering the value of Alpha to be 10 and Beta to 
be 10. From the figure it is also clear that the maximum 
overshoot and settling time of BFO is greater than that of PSO, 
and the rise time is smaller than that of PSO. 

S 
no. 

n α β Kp Kd Mp% Ts Tr 

1 50 10 15 0.81 0.83 0.945 6.894 1.887 

2 50 10 15 0.87 0.80 0.727 8.313 1.743 
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Comparison of PSO and BFO when n=50 alpha=10 beta = 15
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When n=50 (i.e. number of iteration denoted by generation) 
in this case considering the value of Alpha to be 10 and Beta to 
be 10. From the figure it is also clear that the maximum 
overshoot and settling time of BFO is greater than that of PSO, 
and the rise time is smaller than that of PSO. 

S 
no. 

n α β Kp Kd Mp
% 

Ts Tr 

1 50 10 20 0.56 0.5 0.81 0 7.718 

2 50 10 20 0.97 0.9 0.40 23.0 9.354 
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When n=50 (i.e. number of iteration denoted by generation) 
in this case considering the value of Alpha to be 10 and Beta to 
be 20. From the figure it is also clear that the maximum 
overshoot and settling time of BFO is greater than that of PSO, 
and the rise time is smaller than that of PSO. 

S 
no. 

n α β Kp Kd Mp% Ts Tr 

1 200 10 5 0.72 0.8 0.855 0.276 7.128 

2 200 10 5 0.69 0.6 0.552 0 21.74 
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Comparison of PSO and BFO when n=200 alpha=10 beta = 5

 

 

With PSO

With BFO

 

When n=50 (i.e. number of iteration denoted by generation) 
in this case considering the value of Alpha to be 10 and Beta to 
be 10. From the figure it is also clear that the maximum 
overshoot and settling time of BFO is greater than that of PSO, 
and the rise time is smaller than that of PSO. 

S 
no. 

n α β Kp Kd Mp
% 

Ts Tr 

1 200 10 10 0.73 0.75 0.86 0.47 7.084 

2 200 10 10 0.81 0.89 0.47 10.4 7.019 
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Comparison of PSO and BFO when n=200 alpha=10 beta = 10
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When n=200 (i.e. number of iteration denoted by 
generation) in this case considering the value of Alpha to be 10 
and Beta to be 10. From the figure it is also clear that the 
maximum overshoot and settling time of BFO is greater than 
that of PSO, and the rise time is smaller than that of PSO. 
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S 
no. 

n α β Kp Kd Mp
% 

Ts Tr 

1 200 10 20 0.72 0.6 0.8 0.276 7.128 

2 200 10 5 0.69 0.7 0.5 0 21.74 
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Comparison of PSO and BFO when n=200 alpha=10 beta = 20

 

 

With PSO

With BFO

 

When n=200 (i.e. number of iteration denoted by 
generation) in this case considering the value of Alpha to be 10 
and Beta to be 20. From the figure it is also clear that the 
maximum overshoot and settling time of BFO is greater than 
that of PSO, and the rise time is smaller than that of PSO. 

S 
no. 

n α Β Kp Kd Mp
% 

Ts Tr 

1 200 10 10 0.72 0.8 0.65 0.27 7.128 

2 200 10 10 0.69 0.5 0.55 0.35 21.74 
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Comparison of PSO and BFO when n=50 alpha=10 beta = 10

 

 

With PSO

With BFO

 

When n=50 (i.e. number of iteration denoted by generation) 
in this case considering the value of Alpha to be 10 and Beta to 
be 10. From the figure it is also clear that the maximum 
overshoot and settling time of BFO is greater than that of PSO, 
and the rise time is smaller than that of PSO. 
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With PSO

With BFO

 

S 
no. 

n α β Kp Kd Mp% Ts Tr 

1 200 15 10 0.72 0.96 0.985 0.62 5.12
8 

2 200 15 10 0.69 0.52 0.732 0.32 21.7
4 
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Comparison of PSO and BFO when n=50 alpha=15 beta = 10
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When n=200 (i.e. number of iteration denoted by 
generation) in this case considering the value of Alpha to be 10 
and Beta to be 20. From the figure it is also clear that the 
maximum overshoot and settling time of BFO is greater than 
that of PSO, and the rise time is smaller than that of PSO. 

S 
no. 

n α β Kp Kd Mp% Ts Tr 

1 200 20 10 0.72 0.7 0.855 0.27 7.12 

2 200 20 10 0.69 0.68 0.552 0.63 21.7 
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When n=50 (i.e. number of iteration denoted by generation) 
in this case considering the value of Alpha to be 20 and Beta to 
be 10. From the figure it is also clear that the maximum 
overshoot and settling time of BFO is greater than that of PSO, 
and the rise time is smaller than that of PSO. 

S 
no. 

n α β Kp Kd Mp% Ts Tr 

1 200 10 5 0.72 0.89 0.685 0.68 7.128 

2 200 10 5 0.69 0.56 0.921 0.58 21.74 
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When n=200 (i.e. number of iteration denoted by 
generation) in this case considering the value of Alpha to be 5 
and Beta to be 10. From the figure it is also clear that the 
maximum overshoot and settling time of BFO is greater than 
that of PSO, and the rise time is smaller than that of PSO. 

S 
no. 

n α β Kp Kd Mp% Ts Tr 

1 200 10 5 0.72 0.6 0.728 0.2 7.12 

2 200 10 5 0.69 0.508 0.896 0.35 21.7 
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Comparison of PSO and BFO when n=200 alpha=10 beta = 10

 

 

With PSO
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When n=200 (i.e. number of iteration denoted by 
generation) in this case considering the value of Alpha to be 10 
and Beta to be 10. From the figure it is also clear that the 
maximum overshoot and settling time of BFO is greater than 
that of PSO, and the rise time is smaller than that of PSO. 

S 
no. 

n α β Kp Kd Mp% Ts Tr 

1 200 10 5 0.72 0.64 0.855 0.276 7.128 

2 200 10 5 0.69 0.78 0.552 0 21.74 

 

http://www.ijirct.org/


Volume 1 | Issue 2                                                                                                        ©2015 IJIRCT | ISSN: 2454-5988 

 

 IJIRCT1201040 International Journal of Innovative Research and Creative Technology   www.ijirct.org 192 
 

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time(sec)

M
a
g
n
it
u
d
e
(p

u
)

Comparison of PSO and BFO when n=200 alpha=20 beta = 10

 

 

With PSO
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When n=200 (i.e. number of iteration denoted by 
generation) in this case considering the value of Alpha to be 10 
and Beta to be 5. From the figure it is also clear that the 
maximum overshoot and settling time of BFO is greater than 
that of PSO, and the rise time is smaller than that of PSO. 

CONCLUSION 

In this thesis, various classical as well as modern methods 
of PID tuning is discussed according to that they are 
implemented for the stability enhancement of the plant. The 
results are observed are discussed in the result and simulation 
part. Next PID tuning is achieved by two of the modern 
techniques namely Particle Swarm Optimization (PSO) 
algorithm and Bacterial Foraging Optimization (BFO) 
algorithm for the stability enhancement of the plant.  

The result for the plant model system is achieved by 
manipulating the values of the gain parameters of the PID 
controller namely proportional gain, integral gain, and 
derivative gain. Also there is a compromise in overshoot rise 
time and settling time while making a choice between two 
categories of PID tuning.   

From the closed discussion it is seen that by applying PSO 
algorithm it provides optimal values for PID parameters for 
better system performance. Using PSO it can be seen that the 

best overshoot is achieved many times along with good rise 
time as well as settling time.  

BFO algorithm is next optimization technique applied for 
optimization of PID parameters for stability enhancement of 
plant model. Overshoot, rise time and settling time are 
achieved in specified range but as compare to PSO it is not. 
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