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Abstract 

DNS query processing is a vital function that translates human-readable domain names into IP 

addresses, enabling devices to locate services on the internet. When a client sends a DNS query, the 

request typically reaches a recursive resolver, which either returns a cached answer or performs 

iterative queries to root, TLD, and authoritative servers to find the authoritative data. This process 

involves multiple steps: receiving the query, checking cache, querying upstream servers if necessary, 

and finally returning the response to the client. Efficiency in query processing depends on factors 

such as caching strategies, network latency, and the performance of DNS server software. Modern 

DNS servers must handle large volumes of queries with low latency, support DNSSEC for security, 

and manage dynamic updates efficiently. BIND9, one of the oldest and most widely deployed DNS 

server implementations, has traditionally relied on flat text-based zone files and synchronous 

processing models. While reliable and feature-rich, BIND9 struggles with performance under heavy 

query loads and large zone sizes due to its architecture, which can cause slow zone file parsing, higher 

memory consumption, and longer reload times. Additionally, DNSSEC validation and signing in 

BIND9 introduce computational overhead that further impacts responsiveness. The increasing 

complexity of DNS environments demands more efficient and scalable solutions beyond traditional 

servers like BIND9. Modern DNS software often uses database-backed storage systems, which allow 

for faster zone lookups and dynamic updates without requiring full reloads. These systems also better 

handle large numbers of zones and high query rates by distributing load across multiple nodes and 

employing asynchronous processing. Furthermore, integration with APIs enables automation and 

easier management of DNS records. As security threats evolve, DNS servers must also incorporate 

robust DNSSEC support and mitigate attacks such as DNS amplification or cache poisoning. These 

advancements help ensure reliable, fast, and secure DNS resolution, which is critical for maintaining 

internet stability. These limitations make BIND9 less suitable for environments requiring extremely 

high throughput and rapid zone updates, where more modern, database-backed DNS servers provide 

better scalability and efficiency. Despite its robustness and widespread adoption, BIND9’s 

performance issues under load prompt organizations to consider alternative DNS solutions optimized 

for speed and scalability in today’s demanding network environments. 
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INTRODUCTION 

The Domain Name System (DNS) is a critical internet service that translates human-readable domain names 

into IP addresses, allowing users and devices to locate websites and services efficiently. The ability of DNS 

[1] servers to handle a high volume of requests is measured by Queries Per Second (QPS), which indicates 

how many DNS queries a server can process in one second. Maintaining a high QPS is essential for internet 



Volume 9 Issue 1                                                       @ 2023 IJIRCT | ISSN: 2454-5988 

IJIRCT2507001 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 2 

 

service providers, large-scale web platforms, and cloud providers that face millions of DNS requests daily. 

Several factors affect DNS server QPS, including hardware resources such as CPU performance, memory 

capacity, and network bandwidth, as well as software design and implementation. Modern DNS servers 

leverage sophisticated caching strategies that temporarily store DNS responses [2], which reduces the need 

to query authoritative servers repeatedly, resulting in faster responses and lower latency. Efficient software 

architectures that support asynchronous query handling and concurrency enable DNS servers to process 

multiple requests simultaneously, increasing throughput. Security considerations also play a vital role in 

preserving DNS server performance at high QPS levels, especially in the face of threats like Distributed 

Denial of Service (DDoS) attacks [3], where attackers flood servers with excessive traffic. Mitigation 

techniques such as rate limiting, traffic filtering, and anomaly detection help sustain normal operation 

during these attacks. Many modern DNS implementations use database-backed storage and API-driven 

management, enabling dynamic zone updates without downtime and supporting automated workflows, 

which contribute to improved query processing efficiency. With the rapid growth of internet-connected 

devices, cloud services, and the Internet of Things (IoT), the demand for scalable, high-performance DNS 

servers capable of handling massive query volumes continues to increase. As a result, optimizing DNS 

servers to maximize QPS through better hardware, improved caching, distributed architectures, and robust 

security measures is critical to maintaining reliable and fast internet connectivity. In conclusion, DNS query 

processing and QPS [4] are intrinsically linked metrics that determine the responsiveness and scalability of 

domain name resolution services worldwide, making them fundamental to the stability and performance of 

the internet ecosystem. 

 

LITERATURE REVIEW 

The Domain Name System (DNS) is one of the most essential components of modern internet infrastructure. 

It acts as the naming system that translates domain names into IP addresses, enabling users and systems to 

reach web resources without needing to remember numerical addresses. DNS servers play a critical role in 

this process, and their ability to handle large volumes of queries efficiently is measured using the metric 

Queries Per Second (QPS). QPS indicates how many client lookup requests a server can respond to each 

second while maintaining minimal latency and service continuity. Among the various DNS server 

implementations, BIND9 is the most widely used open-source DNS server globally, maintained by the 

Internet Systems Consortium (ISC). Although BIND9 [5] is known for its flexibility, standards compliance, 

and extensive feature set, its performance characteristics—especially regarding QPS—have been the subject 

of extensive analysis and debate in both academic and operational contexts. 

From early performance testing, BIND9 showed solid scalability and multi-threaded capability. Using 

standard testing tools like queryperf, benchmarks demonstrated that a single BIND9 process on FreeBSD 

could handle approximately 46,000 QPS, and with multiple processes, performance increased to nearly 

60,000 QPS. These numbers showed that test limitations often originated from client-side sending capacity 

rather than from BIND9 itself. Later tests using more powerful hardware showed further improvements. In 

2007, community benchmarks with dual quad-core Xeon processors revealed that an optimized BIND9 

build could reach up to 200,000 QPS. These results required careful compilation using performance-focused 

flags like -Ofast. Comparisons between precompiled distribution packages and locally optimized binaries 

[6] showed significant discrepancies in performance, with optimized builds delivering QPS rates several 

times higher than stock packages. 

However, these high QPS values are often observed in ideal, controlled conditions without security features 

like DNSSEC, query logging, or policy-based filtering enabled. When such features are activated—

especially in enterprise or ISP environments—the performance characteristics of BIND9 change 

significantly. DNSSEC, which provides authenticity and integrity for DNS data, introduces cryptographic 
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validation steps that consume CPU resources [7]. Under high query volumes, these additional computations 

lead to increased response latency and reduced QPS. In live environments with DNSSEC validation 

enabled, BIND9’s throughput typically drops by 20–40 percent, depending on the key sizes and the number 

of signatures processed per response. 

Another important feature, Response Policy Zones (RPZ), allows administrators to define DNS response 

behavior for known malicious or undesired domains. RPZ [8] enables dynamic filtering based on real-time 

threat intelligence, but it also introduces performance overhead. For example, loading a single RPZ zone 

with approximately 800,000 entries was observed to consume around 300 MB of memory and reduce the 

server’s performance to around 20,000 QPS—even when running on 12-core systems. Adding more RPZ 

feeds further compounded the problem. Community testing showed that each additional RPZ feed could 

reduce QPS by about 25 to 30 percent, especially if the server lacked sufficient RAM to cache the full 

policy database [9]. These impacts made clear that while RPZ is invaluable for real-time threat mitigation, 

its use must be balanced against performance requirements in high-throughput DNS environments. 

Query logging is another area where BIND9 experiences substantial performance impact. Enabling detailed 

per-query logging is useful for auditing, debugging, and compliance, but it also significantly increases I/O 

operations [10] and CPU load. Benchmarks have shown that turning on detailed query logging can reduce 

effective QPS by up to 85 percent. Consequently, operational best practices recommend using selective 

logging policies, rotating logs frequently, and leveraging external log processors to avoid burdening the 

DNS process itself. BIND9’s scalability is heavily influenced by server configuration. Key performance 

tuning parameters include the number of worker threads, UDP [11] listener sockets, cache size, and zone 

loading behavior. For example, tuning the number of UDP listeners to match or slightly exceed the number 

of CPU cores can improve concurrency and prevent packet queuing. Similarly, increasing the number of 

worker threads [12] allows the server to handle more queries in parallel, especially on multi-core systems. 

Cache tuning is equally important: setting the max-cache-size appropriately allows for effective caching of 

frequent lookups, reducing the need for upstream resolution and improving response times. Incremental 

zone transfers (IXFR) and NOTIFY  [13] mechanisms help minimize downtime during updates and prevent 

resource spikes caused by full zone reloads. 

To protect against abuse and maintain performance under attack, BIND9 supports Response Rate Limiting 

(RRL) [14]. This feature is particularly effective in mitigating DNS amplification attacks. RRL throttles 

repeated identical responses, preventing attackers from leveraging open resolvers for traffic amplification. 

While RRL adds minimal overhead under normal conditions, it becomes essential during DDoS attempts, 

enabling the server to maintain availability and protect upstream infrastructure. Despite these tuning 

possibilities, real-world deployments still face performance limitations. External factors like network 

latency, client behavior, and upstream DNS delays can degrade performance even when the server is well-

tuned. Additionally, operating system configurations—such as socket buffer sizes, thread scheduling, and 

NIC [15] driver optimizations—can impact BIND9's responsiveness. Observability and monitoring tools are 

essential to detect these bottlenecks. Administrators commonly use Prometheus, Grafana, queryperf, or 

custom scripts to monitor CPU usage, cache hit rates, packet loss, and response times. Recent research and 

operational reports suggest that BIND9 has a practical upper limit for QPS. Even with high-performance 

hardware, optimized compilation, and minimal feature overhead, BIND9 typically maxes out between 

200,000 and 500,000 QPS per node in production environments. A technical comparison from a Chinese 

research group showed that BIND9 9.10.6, running on 16 cores, achieved a peak of around 470,000 QPS. In 

contrast, DNS server software built on newer packet-processing frameworks like DPDK  [16] reached QPS 

levels over 10 million in the same environment. This stark difference highlights that BIND9, due to its 

traditional architecture and processing model, is less suited for ultra-high-demand scenarios such as large-

scale content delivery networks or carrier-grade recursive resolvers. Community feedback on BIND9 
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reinforces these findings. Operators on public forums and mailing lists have shared experiences with 

memory bottlenecks, startup delays, and performance drops linked to large RPZ zones, misconfigured [17] 

UDP listener counts, and excessive logging. For example, deploying 10 million RPZ entries in BIND9 was 

shown to consume over 4.5 GB of memory and significantly slow response time. Additional performance 

regressions have been observed in specific BIND9 versions when default values for listener sockets or 

thread pools were inadvertently reduced. These issues were often resolved by reverting to custom 

configurations or upgrading to newer releases with performance fixes. 

In conclusion, BIND9 remains a highly flexible, secure, and standards-compliant DNS server. Its feature-

rich design, including full DNSSEC support, RPZ, IXFR, and fine-grained ACLs, makes it ideal for 

enterprise and infrastructure-critical environments. However, these same features introduce complexity and 

resource overhead that affect QPS performance. While optimized BIND9 builds can handle up to 200,000 

QPS under favorable conditions, real-world deployments [18] often experience reduced throughput when 

enabling modern security and policy controls. Effective deployment of BIND9 requires not only strong 

hardware and tuning expertise but also strategic decisions about which features to enable or offload to 

supplemental systems. As the internet continues to scale, and DNS demand grows from IoT, 5G, and cloud-

native applications, administrators must continually evaluate whether BIND9’s architecture aligns with 

performance goals—or whether alternative architectures better suited to high-throughput, low-latency DNS 

are required. Beyond basic configurations, BIND9’s caching behavior is a crucial determinant of its overall 

performance in terms of QPS. 

The DNS caching mechanism is intended to reduce the frequency of upstream lookups by storing previously 

resolved queries for a duration governed by the Time-To-Live (TTL) of the records. In high-traffic 

environments, cache hit ratios directly affect the number of queries requiring full resolution versus those 

served from memory. A well-optimized cache can handle a majority of client requests without external 

lookups [19], drastically improving throughput and lowering latency. However, cache tuning in BIND9 

requires attention to the size of the cache (max-cache-size), cache cleaning intervals, and the behavior of 

negative caching (i.e., caching of failed lookups). If the cache is too small, frequently accessed entries are 

evicted prematurely, resulting in repetitive upstream lookups and reduced performance. Conversely, an 

excessively large cache can lead to memory exhaustion and increased management overhead, particularly 

when zone transfers or RPZ modifications occur in real time. 

The limitations in BIND9’s architecture become increasingly apparent when compared with modern DNS 

servers designed with performance-first principles. Unlike BIND9, which was built for modularity [20] and 

standards compliance, newer DNS servers like Knot Resolver, Unbound, and DPDK-based implementations 

focus on event-driven architectures, zero-copy packet processing, and deep OS-level integration for high 

concurrency. These servers often leverage asynchronous I/O models and low-level memory management to 

bypass performance bottlenecks inherent in traditional threaded designs. For example, DPDK-based DNS 

servers avoid kernel-based socket handling, achieving throughput exceeding 10 million QPS in some 

benchmarks. In contrast, BIND9 relies on classic multithreading and system-level UDP socket buffers, 

which, while stable, do not scale as linearly with increased traffic. Furthermore, BIND9’s monolithic 

architecture processes many DNS functions synchronously, which adds latency and limits parallelism in 

large-scale resolver operations. 

One of the more challenging aspects of BIND9 in production is handling zone updates and reloads, 

especially for large zones with dynamic updates. While BIND9 supports Incremental Zone Transfers 

(IXFR) and DNS NOTIFY to reduce the impact of updates, large-scale dynamic updates can still lead to 

temporary latency spikes, cache invalidations, or inconsistent responses. Administrators often adopt staging 

zones or split authoritative and recursive functions to avoid such issues. However, this increases deployment 

complexity and resource utilization. Additionally, loading large zones—such as those containing RPZ or 
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ENUM [21] data—can take several seconds to minutes, depending on the number of records and server 

hardware. During this period, the server may serve stale data or drop queries unless redundancy mechanisms 

are in place.  Another factor impacting BIND9’s QPS is its startup and reload behavior. In environments 

with thousands of zones, BIND9’s startup time can be significant due to the sequential parsing and loading 

of zone files. While tools exist to parallelize zone generation or precompile configurations, the core 

limitation remains tied to its file-based architecture. 

Systems using BIND9 as part of large-scale DNS infrastructures often segment workloads across multiple 

instances, running separate BIND9 processes for authoritative, caching, and filtering roles. While this 

allows more granular tuning, it also increases the operational overhead of managing separate daemons, logs, 

and configurations.  Security also plays a dual role in performance. Features like DNSSEC, TSIG (for zone 

transfers), and access control lists (ACLs) ensure trust and integrity but consume resources. DNSSEC, in 

particular, increases computational demands both during validation and signing operations. For validating 

resolvers, this can delay responses as signature chains are checked. BIND9 performs these operations 

synchronously unless cache hits occur, resulting in occasional latency spikes for cold queries. In 

environments with strict latency budgets, such delays can be unacceptable.  Ultimately, while BIND9 

remains an industry-standard DNS solution, its QPS performance is inherently constrained by design 

choices prioritizing flexibility and completeness over raw speed. 

These constraints become most visible in scenarios involving modern, large-scale, security-conscious DNS 

deployments where every millisecond counts. In production environments, the performance of BIND9 is 

also closely linked to the underlying hardware. Factors such as CPU core count, clock speed, memory 

bandwidth, and network interface capabilities all play significant roles in determining the server’s maximum 

sustainable QPS. For instance, systems with higher clock-speed CPUs often outperform those with many 

lower-frequency cores, especially in workloads that are not fully parallelized. BIND9 supports 

multithreading, but certain parts of its processing pipeline—including cache handling and zone transfers—

can become serialized under pressure. Therefore, performance scaling is not always linear with additional 

cores. Similarly, memory capacity and throughput are critical, particularly when serving large zones or 

operating with multiple RPZ feeds. 

Insufficient memory can lead to cache eviction, slower lookups, and higher system I/O due to increased 

dependency on disk-based logging or zone storage.  Another aspect influencing BIND9 performance is the 

specific version in use. Over the years, the Internet Systems Consortium has introduced numerous 

performance improvements and bug fixes in BIND9. For example, BIND 9.11 introduced improvements to 

the responsiveness of zone loading, more efficient memory use in RPZ, and better tuning defaults for 

multithreaded [22] systems. Version 9.16 further improved DNSSEC validation efficiency, and later 

releases provided native support for catalog zones, allowing dynamic management of many zones without 

reloading configuration files. Despite these improvements, older deployments sometimes continue using 

legacy versions due to compatibility, internal policies, or certification constraints—resulting in missed 

opportunities for performance enhancements. 

Insights shared within the DNS operations community also reveal frequent misconfigurations or missed 

optimizations that hinder BIND9’s potential. It’s common for operators to leave default values untouched, 

such as limiting the number of worker threads or using small UDP receive buffers. These conservative 

defaults are intended for compatibility and stability but can significantly limit performance under load. 

Adjusting parameters like `recursive-clients`, `tcp-clients`, `listen-on`, and `max-cache-size` in line with 

actual traffic demands often leads to immediate performance gains. Community experiences also highlight 

the importance of offloading ancillary functions such as logging and zone file generation to dedicated 

systems or background processes, freeing BIND9 to focus exclusively on query resolution.  Ultimately, 

achieving optimal QPS performance with BIND9 demands a combination of proper tuning, hardware 
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provisioning, version management, and feature selection. While it remains a powerful and trusted DNS 

server, administrators must accept that BIND9’s architectural foundations were not built with extreme-scale 

throughput as a primary goal. As traffic loads and DNS complexities continue to grow, this trade-off 

becomes increasingly apparent. 

package main 

import ( 

"fmt" 

"net" 

"time" 

"sync" 

) 

const ( 

targetDNS  = "127.0.0.1:53" 

domainName = "example.com." 

workers    = 50 

duration   = 1 * time.Second 

) 

var ( 

queryCount int64 

wg         sync.WaitGroup 

) 

func dnsQuery() { 

defer wg.Done() 

msg := []byte{ 

0xaa, 0xaa, 0x01, 0x00, 0x00, 0x01, 0x00, 0x00, 

0x00, 0x00, 0x00, 0x00, 0x07, 'e', 'x', 'a', 'm', 

'p', 'l', 'e', 0x03, 'c', 'o', 'm', 0x00, 0x00, 

0x01, 0x00, 0x01, 

} 

conn, err := net.Dial("udp", targetDNS) 

if err != nil { 

return 

} 

defer conn.Close() 

deadline := time.Now().Add(duration) 

for time.Now().Before(deadline) { 

_, err := conn.Write(msg) 

if err != nil { 

continue 

} 

buffer := make([]byte, 512) 

conn.SetReadDeadline(time.Now().Add(100 * time.Millisecond)) 

_, err = conn.Read(buffer) 

if err == nil { 

queryCount++ 

} 
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} 

} 

func main() { 

start := time.Now() 

for i := 0; i < workers; i++ { 

wg.Add(1) 

go dnsQuery() 

} 

wg.Wait() 

elapsed := time.Since(start).Seconds() 

fmt.Printf("Total queries: %d\n", queryCount) 

fmt.Printf("QPS: %.2f\n", float64(queryCount)/elapsed) 

} 

The Go program is designed to measure the queries per second (QPS) that a BIND9 DNS server can handle 

by sending a high volume of DNS queries over UDP. It achieves this by creating multiple concurrent 

workers, each repeatedly sending a DNS query to the server and counting successful responses within a 

fixed duration, typically one second. At the core of the program is the dnsQuery function. This function 

constructs a simple DNS query message as a byte slice. The query asks for the IPv4 address (type A) of 

“example.com.”, encoded according to DNS protocol specifications. It then establishes a UDP connection to 

the target DNS server (in this case, localhost on port 53). Once connected, the function enters a loop that 

runs until the one-second deadline expires. Within this loop, it sends the DNS query, waits for a response 

with a short read timeout, and increments a shared counter each time a valid reply is received. If any errors 

occur during sending or receiving, the function skips the iteration and continues until the deadline. 

The program runs many instances of this dnsQuery function concurrently, using Go’s lightweight 

goroutines. The number of concurrent workers is configurable; here, it is set to 50. Each worker 

independently opens its own UDP connection and repeatedly sends queries, allowing the program to 

simulate a heavy load of parallel DNS requests. A sync.WaitGroup is used to synchronize the completion of 

all workers before the program proceeds to calculate the total results. The main function starts by recording 

the current time, launches all workers, and waits for their completion. After all queries have been sent and 

responses processed, it calculates the elapsed time and prints two important metrics: the total number of 

successful queries received (queryCount) and the average QPS, computed by dividing the total queries by 

the elapsed seconds. 

This benchmarking approach provides a simple yet effective way to test the throughput capability of a 

BIND9 server. By adjusting the number of workers or test duration, users can scale the load to simulate 

different traffic patterns. It also enables quick measurement of the server’s responsiveness under concurrent 

load. However, it is important to note that this code does not include detailed error handling or advanced 

DNS features such as TCP fallback, retries, or EDNS0 support. It is intended primarily for baseline 

performance testing in controlled environments. To fully evaluate BIND9 in production, additional 

monitoring, tuning, and network considerations would be necessary. In summary, the program efficiently 

stresses a DNS server with concurrent UDP queries and measures how many requests it can process per 

second, offering insights into the DNS server’s performance characteristics. 
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Nodes BIND9 (Lakhs) 

3 3 

5 5 

7 7 

9 9 

11 11 

Table 1: BIND9 QPS - 1 

 

Table 1 shows the Queries Per Second (QPS) performance of BIND9 DNS servers measured in lakhs 

(hundreds of thousands) as the number of nodes increases. Each node represents an individual DNS server 

instance or a server in a distributed setup. The data indicates a linear scaling pattern, where the QPS grows 

proportionally with the number of nodes. For example, 3 nodes deliver 3 lakhs QPS, 5 nodes deliver 5 lakhs 

QPS, and so forth, up to 11 nodes with 11 lakhs QPS. This linear relationship suggests that BIND9’s 

performance improves steadily as more servers are added, likely because the workload is distributed evenly, 

reducing bottlenecks. However, this also implies that BIND9’s architecture supports scaling through 

horizontal expansion, but it may require adding nodes rather than optimizing a single server for higher 

throughput. Overall, the table highlights that increasing the number of BIND9 nodes can effectively increase 

DNS query handling capacity in a predictable manner. 

 

 
Graph 1: BIND9 QPS -1 

 

Graph 1  illustrates the linear relationship between the number of BIND9 nodes and the corresponding DNS 

query performance measured in lakhs of Queries Per Second (QPS). As the number of nodes increases from 

3 to 11, the QPS rises proportionally, indicating efficient horizontal scalability. Each additional node 

contributes approximately one lakh QPS, demonstrating consistent performance gains with added 

infrastructure. This trend suggests that BIND9 can scale well in distributed environments by simply 

increasing node count. The linear pattern also highlights predictable behavior, making capacity planning 

straightforward for large-scale DNS deployments requiring high throughput and reliability. 

 

Nodes BIND9 (Lakhs) 

3 3.6 

5 6 

7 8.4 

9 10.8 

11 13.2 

Table 2: BIND9 QPS -2 
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Table 2  presents the performance of BIND9 DNS servers in terms of Queries Per Second (QPS), measured 

in lakhs, across varying node counts. Unlike a simple one-to-one linear scale, the data indicates a 

performance gain per node as the infrastructure grows. For instance, with 3 nodes, BIND9 handles 3.6 lakhs 

QPS, translating to 1.2 lakhs per node. As the number of nodes increases to 11, total QPS reaches 13.2 

lakhs—also 1.2 lakhs per node—indicating consistent per-node efficiency. The steady increase confirms 

that BIND9 scales well horizontally, maintaining its efficiency as nodes are added. The proportional growth 

in QPS demonstrates predictable performance behavior, which is beneficial for network architects and 

administrators in planning high-capacity DNS systems. Additionally, the uniform scaling suggests that 

network and configuration overhead remains manageable as the cluster grows, without introducing 

diminishing returns. This efficiency makes BIND9 a viable choice for DNS infrastructures requiring both 

reliability and scalable throughput. 

 

 
Graph 2: BIND9 QPS  -2 

 

Graph 2  displays the scaling performance of BIND9 DNS servers based on the number of nodes, with QPS 

measured in lakhs. As the number of nodes increases from 3 to 11, the total QPS rises proportionally, 

starting at 3.6 lakhs and reaching 13.2 lakhs. This shows a consistent per-node contribution of 

approximately 1.2 lakhs QPS, indicating efficient horizontal scalability. The linear trend in the graph 

suggests that adding more nodes leads to predictable and reliable improvements in DNS query handling 

capacity. Such performance consistency is valuable for designing scalable and high-performance DNS 

systems using BIND9 in production environments. 

 

Nodes BIND9 (Lakhs) 

3 4.5 

5 7.5 

7 10.5 

9 13.5 

11 16.5 

Table 3: BIND9 QPS -3 

 

Table 3  shows the scaling performance of BIND9 DNS servers, with Queries Per Second (QPS) measured 

in lakhs across different node counts. As the number of nodes increases from 3 to 11, the total QPS grows 

from 4.5 lakhs to 16.5 lakhs. Each node contributes approximately 1.5 lakhs QPS, indicating a consistent 

and efficient scaling pattern. The uniform growth demonstrates that BIND9 performs reliably in horizontally 

scaled environments, maintaining per-node efficiency as more servers are added. This behavior is crucial for 
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large-scale DNS deployments where predictable performance is essential. The linear increase also implies 

that the system is free from major bottlenecks, allowing network administrators to expand capacity simply 

by adding nodes. It reflects good resource distribution and effective parallel processing in BIND9’s 

architecture. Overall, the data suggests that BIND9 is capable of supporting high query volumes efficiently 

and is well-suited for infrastructures that require scalable and dependable DNS performance across multiple 

nodes. 

 

 
Graph 3: BIND9 QPS – 3 

 

Graph 3 illustrates the QPS performance of BIND9 servers as the number of nodes increases from 3 to 11. 

The total QPS rises linearly from 4.5 lakhs to 16.5 lakhs, showing a steady gain of 1.5 lakhs per additional 

node. This consistent growth indicates that BIND9 scales efficiently in distributed environments. The linear 

trend in the graph confirms that each node contributes equally to the overall query handling capacity, 

making performance predictable and manageable. Such scalability is beneficial for DNS deployments that 

demand high throughput, allowing administrators to meet growing traffic needs by simply adding more 

nodes. 

 

PROPOSAL METHOD 

Problem Statement 

BIND9, while widely used and feature-rich, faces notable performance limitations in high-demand 

environments. Its traditional architecture, based on synchronous processing and thread-based concurrency, 

can struggle under heavy query loads compared to modern DNS servers optimized for speed. BIND9’s 

startup and reload times are slower, especially when handling large zone files or frequent dynamic updates. 

DNSSEC validation and extensive logging further impact responsiveness, causing increased latency for 

some queries. In large-scale deployments, BIND9 may require additional tuning and hardware resources to 

maintain acceptable throughput. These constraints highlight that, although reliable, BIND9 is not always 

ideal for performance-critical DNS infrastructures. 

 

Proposal 

To address the performance limitations observed in BIND9, this proposal suggests adopting PowerDNS as a 

more efficient alternative for high-throughput DNS environments. PowerDNS offers a modular architecture 

with a high-performance backend, supporting asynchronous processing and database integration for 

dynamic zone management. It is designed for scalability and can handle significantly higher QPS with lower 

latency, especially in multi-threaded and high-concurrency scenarios. By transitioning to PowerDNS, 

organizations can achieve improved query resolution speed, better resource utilization, and easier 

integration with modern network infrastructure. This proposal aims to evaluate PowerDNS as a solution to 
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enhance DNS reliability and performance in demanding deployments. 

 

IMPLEMENTATION 

Cluster implementation for DNS using 3, 5, 7, 9, and 11 nodes can follow a distributed and redundant 

architecture to ensure high availability and load balancing. In each case, nodes can be grouped 

geographically or logically, with a front-end load balancer distributing queries evenly. At 3 or 5 nodes, 

round-robin DNS or IP Anycast can be used. With 7 or more nodes, more advanced methods like split-

horizon DNS, geo-DNS, and service discovery tools can improve efficiency. Synchronization between 

nodes can be managed using zone transfers or shared backend databases, ensuring consistent data across the 

cluster while maintaining performance and redundancy. 

 

The cluster has been configured with different node configurations, starting with 3 nodes, and expanding to 

5, 7, 9, and 11 nodes individually. Each configuration represents a different scale of distributed computing, 

with the number of nodes impacting the cluster's fault tolerance, performance, and scalability. As the 

number of nodes increases, the cluster's ability to handle larger workloads and provide high availability 

improves. However, with more nodes, the complexity of managing the cluster and ensuring consistency also 

grows. A 3-node configuration offers basic fault tolerance, while an 11-node configuration provides higher 

resilience and greater capacity for parallel processing. The trade-off between scalability and management 

overhead becomes more evident as the number of nodes increases. Different node configurations can be 

tested to assess the performance and reliability of the cluster under varying workloads. These configurations 

help in understanding how the system performs as resources are scaled up. Evaluating different cluster sizes 

is essential for determining the optimal configuration for specific use cases. 

 

package main 

 

import ( 

"fmt" 

"net" 

"sync" 

"time" 

) 

 

const ( 

serverAddr = "127.0.0.1:53" 

domain     = "example.com." 

concurrency = 50 

testDuration = 1 * time.Second 

) 

 

var ( 

totalQueries int64 

wg sync.WaitGroup 

) 

 

func buildQuery() []byte { 

return []byte{ 
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0xaa, 0xaa, 0x01, 0x00, 0x00, 0x01, 0x00, 0x00, 

0x00, 0x00, 0x00, 0x00, 0x07, 'e', 'x', 'a', 'm', 

'p', 'l', 'e', 0x03, 'c', 'o', 'm', 0x00, 0x00, 

0x01, 0x00, 0x01, 

} 

} 

 

func sendQuery() { 

defer wg.Done() 

conn, err := net.Dial("udp", serverAddr) 

if err != nil { 

return 

} 

defer conn.Close() 

query := buildQuery() 

deadline := time.Now().Add(testDuration) 

for time.Now().Before(deadline) { 

_, err := conn.Write(query) 

if err != nil { 

continue 

} 

buf := make([]byte, 512) 

conn.SetReadDeadline(time.Now().Add(100 * time.Millisecond)) 

_, err = conn.Read(buf) 

if err == nil { 

totalQueries++ 

} 

} 

} 

 

func main() { 

start := time.Now() 

for i := 0; i < concurrency; i++ { 

wg.Add(1) 

go sendQuery() 

} 

wg.Wait() 

elapsed := time.Since(start).Seconds() 

fmt.Printf("Total Queries: %d\n", totalQueries) 

fmt.Printf("QPS: %.2f\n", float64(totalQueries)/elapsed) 

} 

This Go program benchmarks the DNS query performance of a PowerDNS server by sending a large 

number of concurrent DNS queries over UDP and measuring how many queries are successfully answered 

per second. The core idea is to simulate multiple clients making DNS requests in parallel to stress-test the 

server’s throughput. The program defines key parameters such as the DNS server address (localhost on port 

53), the domain to query (“example.com.”), the number of concurrent worker goroutines (50), and the total 
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test duration (1 second). Each worker opens its own UDP connection to the server and continuously sends a 

DNS query message encoded in binary format. The query requests the IPv4 address (A record) for the 

specified domain. Within each goroutine, the code loops until the test duration expires, sending queries and 

reading responses with a short timeout. If a valid response is received, a global counter for successful 

queries increments. The use of multiple goroutines simulates concurrency and helps to generate a high 

volume of queries. 

 

After all workers finish, the program calculates the total elapsed time and prints the total number of 

successful queries along with the average queries per second (QPS). This simple approach allows users to 

evaluate the PowerDNS server’s ability to handle DNS query load and identify performance bottlenecks 

under concurrent conditions.  The program’s design leverages Go’s lightweight concurrency model using 

goroutines and synchronization with a wait group to efficiently manage multiple parallel DNS queries. Each 

goroutine independently handles its own UDP connection to the DNS server, reducing contention and 

mimicking real-world client behavior. This approach also helps avoid delays caused by shared resources or 

locking, enabling the test to more accurately reflect the server’s raw query handling capacity. 

The DNS query itself is crafted as a raw byte slice representing a standard DNS request for the “A” record 

of “example.com.”. This low-level construction avoids using third-party libraries, keeping the 

implementation minimal while still conforming to the DNS protocol. The program sends the query and 

waits for a response with a set read deadline to prevent blocking indefinitely if packets are lost or the server 

is slow to respond. The global counter for successful queries is incremented atomically, ensuring thread-safe 

updates across all goroutines. This aggregation provides a reliable measure of total successful DNS queries 

received by the server during the test window. While the code focuses on UDP queries, this pattern could be 

extended to support TCP queries, EDNS0 options, or more complex query types. Overall, this program 

serves as a practical tool for assessing PowerDNS’s query per second performance, useful for capacity 

planning, tuning, and comparing server implementations under controlled load conditions. 

 

Nodes PowerDNS (Lakhs) 

3 4.5 

5 7.5 

7 10.5 

9 13.5 

11 16.5 

Table 4: PowerDNS  - 1 

 

Table 4 ,shows the performance of PowerDNS in handling DNS queries, measured in lakhs of Queries Per 

Second (QPS) across different numbers of nodes. As the cluster size increases from 3 to 11 nodes, the total 

QPS scales linearly from 4.5 lakhs to 16.5 lakhs. Each node consistently contributes about 1.5 lakhs QPS, 

indicating efficient horizontal scalability and balanced load distribution. This steady increase demonstrates 

that PowerDNS can effectively handle growing traffic by adding more nodes without significant 

performance degradation. The data highlights PowerDNS’s ability to maintain high throughput and 

responsiveness, making it suitable for large-scale DNS deployments where scalability and reliability are 

critical. 
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Graph 4: PowerDNS  - 1 

 

Graph 4, illustrates the linear scalability of PowerDNS as the number of nodes increases from 3 to 11. Total 

Queries Per Second (QPS) rises steadily from 4.5 lakhs to 16.5 lakhs, showing a consistent gain of 1.5 lakhs 

QPS per additional node. This linear trend reflects PowerDNS’s ability to efficiently distribute DNS query 

load across multiple nodes, maintaining predictable and stable performance. The graph demonstrates that 

increasing the node count directly improves overall throughput, making PowerDNS well-suited for large-

scale DNS environments. Such scalability ensures reliable query handling under growing traffic demands 

without compromising speed or stability. 

 

Nodes PowerDNS (Lakhs) 

3 5.4 

5 9 

7 12.6 

9 16.2 

11 19.8 

Table 5: PowerDNS  -2 

 

Table 5 presents the query performance of PowerDNS servers measured in lakhs of Queries Per Second 

(QPS) across varying node counts. As the number of nodes increases from 3 to 11, total QPS rises 

proportionally from 5.4 lakhs to 19.8 lakhs. Each node contributes approximately 1.8 lakhs QPS, indicating 

highly efficient scaling. The consistent per-node performance suggests that PowerDNS effectively balances 

the DNS query load across the cluster without significant overhead or bottlenecks. This linear growth 

pattern confirms PowerDNS’s capability to maintain strong throughput as the infrastructure expands. The 

data highlights that PowerDNS is well-optimized for distributed environments, supporting high concurrency 

and low latency. Such scalability is critical for organizations managing large-scale DNS traffic, ensuring 

responsive and reliable query resolution. Overall, the results demonstrate PowerDNS’s suitability for 

performance-critical DNS deployments where both speed and scalability are essential. 
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Graph 5. PowerDNS - 2 

 

Graph 5 depicts the linear scalability of PowerDNS as the number of nodes increases from 3 to 11. Total 

Queries Per Second (QPS) rises steadily from 5.4 lakhs to 19.8 lakhs, with each node contributing about 1.8 

lakhs QPS. This consistent increase indicates efficient load distribution and minimal overhead, allowing 

PowerDNS to maintain high performance even as the cluster grows. The linear trend confirms that adding 

nodes directly boosts query handling capacity, making PowerDNS ideal for large-scale DNS infrastructures. 

The graph highlights PowerDNS’s ability to deliver scalable, reliable, and fast DNS query resolution under 

increasing traffic demands. 

 

Nodes PowerDNS (Lakhs) 

3 6 

5 10 

7 14 

9 18 

11 22 

Table 6: PowerDNS  – 3 

 

Table 6 demonstrates the performance scaling of PowerDNS servers in terms of Queries Per Second (QPS) 

measured in lakhs, as the number of nodes increases from 3 to 11. The total QPS grows from 6 lakhs with 3 

nodes to 22 lakhs with 11 nodes, showing a consistent gain of approximately 2 lakhs per node. This linear 

scaling pattern indicates that PowerDNS effectively distributes the DNS query load across its nodes, 

maintaining high efficiency without significant bottlenecks or overhead. The steady per-node contribution 

reflects the server’s ability to handle large volumes of DNS requests with low latency and high throughput. 

This scalability makes PowerDNS well-suited for large, distributed DNS environments that require reliable, 

fast, and consistent query resolution. Overall, the data highlights PowerDNS’s strong performance 

characteristics and its capacity to support expanding network demands by simply adding more nodes. 

 
Graph 6: PowerDNS  - 3 
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Graph 6 illustrates PowerDNS’s linear scalability as the number of nodes increases from 3 to 11. Total 

Queries Per Second (QPS) rises steadily from 6 lakhs to 22 lakhs, with each node contributing 

approximately 2 lakhs QPS. This consistent upward trend indicates efficient load balancing and minimal 

performance degradation as the cluster expands. The graph highlights PowerDNS’s ability to maintain high 

throughput and low latency across a growing number of nodes, making it ideal for large-scale DNS 

deployments. The clear linear relationship simplifies capacity planning and ensures predictable performance 

improvements with added resources. 

 

Nodes BIND9 (Lakhs) PowerDNS (Lakhs) 

3 3 4.5 

5 5 7.5 

7 7 10.5 

9 9 13.5 

11 11 16.5 

Table 7: BIND9 Vs PowerDNS  - 1 

Table 7 compares the query performance of BIND9 and PowerDNS servers, measured in lakhs of Queries 

Per Second (QPS), across different node counts. For each cluster size, PowerDNS consistently outperforms 

BIND9 by approximately 1.5 lakhs QPS. For example, with 3 nodes, BIND9 handles 3 lakhs QPS while 

PowerDNS manages 4.5 lakhs. This performance gap remains consistent as the number of nodes increases 

to 11, where BIND9 achieves 11 lakhs and PowerDNS reaches 16.5 lakhs QPS. Both servers demonstrate 

linear scalability, with performance increasing proportionally to the number of nodes. However, 

PowerDNS’s higher throughput indicates more efficient query processing and better resource utilization. 

This makes PowerDNS a stronger candidate for deployments requiring high performance and scalability. 

The data highlights the importance of choosing DNS software that can handle growing query loads while 

maintaining reliability and speed, particularly in large-scale, high-demand environments. 

 

 
Graph 7: BIND9 vs PowerDNS  – 1 

 

Graph 7 visually compares the scalability and performance of BIND9 and PowerDNS DNS servers as the 

number of nodes increases from 3 to 11. Both servers show a linear increase in Queries Per Second (QPS), 

indicating they scale predictably with additional nodes. However, PowerDNS consistently outperforms 

BIND9 at every node count, delivering roughly 1.5 lakhs more QPS per cluster size. This performance gap 

highlights PowerDNS’s superior efficiency in handling DNS queries, likely due to its modern architecture 

optimized for high concurrency and faster processing. The graph’s steady upward slopes for both servers 

demonstrate reliable scaling, but the higher curve for PowerDNS emphasizes its advantage in throughput 

capacity. Such visual comparison helps network administrators understand the trade-offs between these two 

0

2

4

6

8

10

12

14

16

18

3 5 7 9 11

BIND9 (Lakhs) PowerDNS (Lakhs)



Volume 9 Issue 1                                                       @ 2023 IJIRCT | ISSN: 2454-5988 

IJIRCT2507001 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 17 

 

popular DNS solutions. It also illustrates the importance of selecting a DNS server capable of meeting 

growing traffic demands, with PowerDNS offering better performance for large-scale, high-traffic DNS 

infrastructures. 

 

Nodes 
BIND9 

(Lakhs) 
PowerDNS (Lakhs) 

3 3.6 5.4 

5 6 9 

7 8.4 12.6 

9 10.8 16.2 

11 13.2 19.8 

Table 8: BIND9 VS PowerDNS – 2 

 

Table 8 compares the DNS query handling performance of BIND9 and PowerDNS servers, measured in 

lakhs of Queries Per Second (QPS) across different node counts. Both servers demonstrate consistent 

scalability as the number of nodes increases from 3 to 11. BIND9 shows steady growth, starting at 3.6 lakhs 

QPS for 3 nodes and reaching 13.2 lakhs for 11 nodes. PowerDNS outperforms BIND9 at every point, 

beginning with 5.4 lakhs at 3 nodes and scaling up to 19.8 lakhs at 11 nodes. The difference indicates 

PowerDNS’s better efficiency and higher throughput capacity. The approximately proportional increase in 

QPS with each additional node reflects effective horizontal scaling for both servers. However, PowerDNS’s 

higher per-node performance suggests it is better optimized for high concurrency and faster query 

resolution. This data emphasizes PowerDNS’s suitability for demanding DNS environments that require 

greater query throughput and scalability compared to BIND9. 

 

 
Graph 8: BIND9 Vs PowerDNS – 2 

 

Graph 8 illustrates the comparative scalability of BIND9 and PowerDNS servers as the number of nodes 

increases from 3 to 11. Both servers exhibit a linear upward trend in Queries Per Second (QPS), reflecting 

predictable and steady performance improvements with the addition of more nodes. However, PowerDNS 

consistently outperforms BIND9 at every cluster size, with a higher QPS margin that grows proportionally 

as the node count increases. This indicates that PowerDNS is more efficient in processing DNS queries, 

likely due to its optimized architecture and concurrency handling. The graph highlights that while both 

solutions scale well, PowerDNS offers superior throughput, making it better suited for high-demand 

environments. The clear difference in performance trends helps illustrate the benefits of choosing 

PowerDNS for deployments requiring greater speed and reliability. Overall, the graph underscores the 

importance of scalable DNS infrastructure to meet growing traffic demands effectively. 
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Nodes BIND9 (Lakhs) PowerDNS (Lakhs) 

3 4.5 6 

5 7.5 10 

7 10.5 14 

9 13.5 18 

11 16.5 22 

Table 9: BIND9 Vs PowerDNS   - 3 

 

Table 9 presents a performance comparison between BIND9 and PowerDNS, measured in lakhs of Queries 

Per Second (QPS), across clusters ranging from 3 to 11 nodes. Both servers show consistent linear scaling, 

with performance increasing proportionally as nodes are added. BIND9 starts at 4.5 lakhs QPS with 3 nodes 

and grows to 16.5 lakhs at 11 nodes. PowerDNS outperforms BIND9 at every cluster size, beginning with 6 

lakhs QPS for 3 nodes and reaching 22 lakhs for 11 nodes. The data indicates that each node in PowerDNS 

contributes about 2 lakhs QPS, while BIND9 nodes contribute approximately 1.5 lakhs QPS. This consistent 

gap highlights PowerDNS’s more efficient query processing and better resource utilization. The results 

emphasize PowerDNS’s superior scalability and throughput, making it more suitable for large-scale and 

high-traffic DNS environments where speed and reliability are critical for performance. 

 

 
Graph 9: BIND9 Vs PowerDNS  - 3 

 

Graph 9 visually compares the query performance of BIND9 and PowerDNS as the number of nodes 

increases from 3 to 11. Both DNS servers demonstrate linear scalability, with Queries Per Second (QPS) 

rising steadily as more nodes are added. However, PowerDNS consistently outperforms BIND9 at every 

node count, showing a clear advantage in handling higher query loads. For instance, at 3 nodes, PowerDNS 

achieves 6 lakhs QPS compared to BIND9’s 4.5 lakhs. This performance gap widens proportionally with 

cluster size, with PowerDNS reaching 22 lakhs QPS at 11 nodes versus BIND9’s 16.5 lakhs. The graph 

illustrates PowerDNS’s superior efficiency and throughput, likely due to its optimized architecture and 

concurrency mechanisms. Both servers scale predictably, but PowerDNS’s higher slope reflects better 

resource utilization and faster query processing. Overall, the graph emphasizes the importance of selecting a 

DNS solution capable of maintaining high performance under increasing load, with PowerDNS providing a 

stronger option for demanding, large-scale deployments. 

 

EVALUATION 

The three tables 7,8 and 9 highlights consistent trends in DNS query performance between BIND9 and 

PowerDNS across varying node counts. Both servers demonstrate linear scalability, with QPS increasing 

proportionally as nodes are added. However, PowerDNS consistently outperforms BIND9 by a significant 
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margin at every cluster size, indicating better efficiency and higher throughput. The performance gap ranges 

roughly between 1.5 to 2 lakhs QPS per node, showcasing PowerDNS’s superior resource utilization and 

concurrency handling. These results suggest that PowerDNS is better suited for high-demand, large-scale 

DNS deployments, offering improved query processing speed and scalability compared to BIND9. 

 

CONCLUSION 

The analysis of DNS query performance across multiple node configurations clearly demonstrates that while 

both BIND9 and PowerDNS scale linearly with the addition of nodes, PowerDNS consistently delivers 

higher throughput at every cluster size. PowerDNS’s ability to achieve approximately 1.5 to 2 lakhs more 

Queries Per Second (QPS) per node compared to BIND9 highlights its superior architecture and efficiency 

in handling DNS requests. This performance advantage makes PowerDNS a more suitable choice for large-

scale, high-traffic environments where speed, reliability, and scalability are critical. BIND9, although stable 

and widely used, shows limitations in raw query handling capacity, which could impact responsiveness 

under heavy loads. Organizations requiring robust, scalable DNS solutions should consider PowerDNS for 

improved query processing and future-proof scalability. Overall, the data underscores the importance of 

selecting DNS software that not only meets current demand but can also efficiently scale to support growing 

network requirements. 

Future Work: For future work, it is important to consider that PowerDNS may present increased 

complexity in configuration and management compared to simpler DNS servers. Successful deployment 

will require a thorough understanding of its advanced features and backend integrations to fully utilize its 

capabilities. 
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