
Volume 11 Issue 3 @ 2025 IJIRCT | ISSN: 2454-5988

IJIRCT2506029 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 1
 1

P rogressive Web Apps with Oracle APEX:

Features and Best Practices

Ashraf Syed

maverick.ashraf@gmail.com

Abstract

Progressive Web Apps (PWAs) have emerged as a transformative technology, blending web

accessibility with native app-like features such as offline access, installability, and push notifications

[1]. Oracle Application Express (APEX), a low-code platform integrated with Oracle Database,

enhances PWA development by offering built-in tools for rapid, scalable, and secure application

creation [2]. This article investigates PWA features, including responsive design, fast load times, and

service worker-driven offline functionality, alongside best practices like performance optimization

and HTTPS enforcement in Oracle APEX. A real-world case study of NHS York Teaching Hospital’s

mobile tasking application illustrates PWA benefits in healthcare, leveraging Oracle APEX for cross-

platform compatibility and notification-driven task management, improving operational efficiency

[3]. Despite these advantages, challenges persist, such as inconsistent browser support, particularly on

iOS, and limited hardware access compared to native apps [4]. Future directions point to enhanced

PWA support in Oracle APEX, including AI integration and evolving web standards. This study

synthesizes insights into PWA adoption, drawing on systematic reviews and empirical data,

emphasizing Oracle APEX’s role in delivering reliable, user-centric applications. This analysis

provides a roadmap for developers to harness PWAs in enterprise contexts, focusing on healthcare

scalability and usability, supported by practical examples and forward-looking trends.

Keywords: Oracle APEX, Progressive Web Apps (PWAs), Low-Code Development, Offline

Functionality, Push Notifications, Service Workers, Web App Manifest, Mobile-First Applications,

Application Performance, Enterprise Software

I. INTRODUCTION

Progressive Web Apps (PWAs) represent a significant evolution in web application development, combining

the accessibility of traditional web technologies such as HTML, CSS, and JavaScript with native app-like

capabilities, including offline functionality, installability, and push notifications [1]. Introduced conceptually

around 2015 by Google engineers, PWAs leverage modern web standards like service workers and web app

manifests to deliver reliable, engaging user experiences across devices. Their adoption has surged due to the

growing reliance on mobile platforms. This proliferation underscores the demand for cost-effective, scalable

solutions that bridge the gap between web and native applications, offering businesses a way to enhance user

engagement without the overhead of separate iOS and Android development cycles.

The appeal of the PWAs lies in their ability to reduce development costs while improving performance

metrics, demonstrating tangible benefits in user retention and revenue [6]. Similarly, industries like e-

commerce, media, and healthcare have embraced PWAs to deliver fast, responsive applications that work

seamlessly in low-connectivity environments, a critical feature in regions with unreliable internet access.

These advantages stem from PWA's lightweight architecture, which prioritizes speed and reliability over the

resource-intensive nature of native apps.

mailto:maverick.ashraf@gmail.com

Volume 11 Issue 3 @ 2025 IJIRCT | ISSN: 2454-5988

IJIRCT2506029 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 2

Oracle Application Express (APEX), a low-code development platform integrated with Oracle Database, has

emerged as a powerful tool for building PWAs, particularly since introducing PWA support in 2020 [2], [7].

Oracle APEX simplifies the development process by providing declarative features and built-in tools, such as

the Create Application Wizard, which enables PWA functionality with minimal coding [8]. This low-code

approach aligns with the needs of enterprises seeking rapid deployment of secure, scalable applications,

especially in data-driven sectors like healthcare and finance. By leveraging Oracle APEX, developers can

create PWAs that integrate seamlessly with Oracle databases, ensuring robust data management and security,

which are key considerations for mission-critical systems.

The synergy between PWAs and Oracle APEX is particularly relevant in the context of mobile-first

strategies. PWAs built with Oracle APEX inherit features like responsive design through the Universal

Theme, ensuring compatibility across desktops, tablets, and smartphones [2]. Additionally, Oracle APEX

supports service worker configuration for offline capabilities and push notifications, enhancing user

engagement in real-time scenarios [9], [10]. These features position Oracle APEX as a competitive alternative

to traditional web frameworks, offering a balance of simplicity and advanced functionality that appeals to both

novice developers and seasoned professionals.

This article aims to comprehensively analyze PWAs developed with Oracle APEX. Structured across

multiple sections—Introduction, Background, and Relative Studies, Features of PWA, Best Practices, Case

Study (Health Care Application), Challenges and Limitations, Future Directions, and Conclusion—it explores

the technical underpinnings, practical applications, and future potential of this technology stack. The study

draws on empirical evidence, such as the NHS York Teaching Hospital case study, which utilized Oracle

APEX to deploy a PWA for mobile task management, replacing outdated bleep systems with a cross-platform,

notification-driven solution [3]. This example highlights PWA's transformative impact in healthcare, where

reliability and accessibility are paramount.

Despite their advantages, PWAs face challenges, including inconsistent browser support, particularly on

iOS, and limited access to device hardware compared to native apps [4]. These limitations necessitate careful

consideration during development, especially in Oracle APEX, where customization of service workers or

integration with legacy systems may require additional effort. However, ongoing advancements in web

standards and Oracle APEX's roadmap, which includes plans for AI integration and enhanced PWA features,

suggest a promising trajectory for overcoming these hurdles [15].

The significance of this research lies in its focus on Oracle APEX as a facilitator of PWA adoption, offering

a low-code pathway to sophisticated web applications. By examining features like offline functionality and

best practices such as performance optimization, this article provides actionable insights for developers. It also

addresses real-world implications through a healthcare lens while identifying challenges and future directions

to guide further innovation. With a foundation in peer-reviewed literature and industry case studies, this work

aims to contribute to the academic discourse on PWAs, emphasizing their role in shaping the next generation

of enterprise solutions.

II. BACKGROUND AND RELATED WORK

The development of Progressive Web Apps (PWAs) marks a pivotal shift in web technology, driven by the

need for applications that combine the accessibility of the web with the functionality of native apps. The

concept of PWAs emerged around 2015, spearheaded by Google engineers Alex Russell and Frances

Berriman, who envisioned web applications capable of operating offline, loading instantly, and engaging users

through push notifications [1]. This vision materialized with the introduction of service workers, JavaScript

files that run in the background to manage caching and network requests, and web app manifests, which define

an app's metadata for installability. These technologies enabled PWAs to address longstanding limitations of

Volume 11 Issue 3 @ 2025 IJIRCT | ISSN: 2454-5988

IJIRCT2506029 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 3

traditional web apps, such as dependency on constant internet connectivity, positioning them as a viable

alternative to native applications.

The adoption of PWAs has been fueled by the explosive growth of mobile usage, with smartphone users

reaching 6.3 billion globally in 2023 [5]. Early adopters in e-commerce and media demonstrated PWAs'

potential: for instance, Kaporal achieved a 60% reduction in bounce rates and a 15% increase in conversions

after transitioning to a PWA [6]. Such metrics highlight PWAs' ability to enhance user experience through fast

load times and offline capabilities, which are critical in regions with unreliable networks. A comprehensive

review, "A Comprehensive Review of Progressive Web Apps: Bridging the Gap Between Web and Native

Experiences," synthesizes over 50 studies, noting PWAs' cross-platform compatibility and cost-efficiency as

key drivers of their rise, though browser inconsistencies remain a challenge [12].

Oracle Application Express (APEX), a low-code platform integrated with Oracle Database, entered the

PWA landscape with official support in version 20.2 (2020), aligning with this trend [2], [7]. Oracle APEX

simplifies PWA development by embedding features like service worker configuration and manifest

generation into its declarative environment, reducing the need for extensive manual coding [8]. A practical

exploration by Vincent Morneau in his blog series "APEX as a PWA" details the implementation process,

from enabling PWA settings to customizing offline pages, offering developers a blueprint for leveraging

Oracle APEX's capabilities [16]. This integration caters to enterprises requiring rapid deployment of secure,

data-driven applications, particularly in healthcare and finance sectors where Oracle's database strengths are

well-established.

Relative studies provide deeper insights into PWAs' technical and user-facing dimensions. "User

Perceptions of Progressive Web App Features: An Analytical Approach and a Systematic Literature Review"

surveyed 226 users and reviewed 30 studies, finding high satisfaction with PWAs' usability and engagement,

especially on iOS, despite installation complexities [13]. The study highlights offline functionality and push

notifications as standout features, aligning with Oracle APEX's offerings [9], [10]. Conversely, "A Systematic

Literature Review on Progressive Web Application Practice and Challenges" analyzed 31 practices and

identified seven challenges, including limited hardware access and browser support variability pertinent to

Oracle APEX implementations [11]. These findings underscore the need for strategic planning when

deploying PWAs in diverse environments.

The healthcare sector offers a compelling context for PWA adoption with Oracle APEX. The NHS York

Teaching Hospital case study exemplifies this: a PWA replaced the traditional bleep system, improving task

management through cross-platform compatibility and real-time notifications [3]. This aligns with broader

trends in healthcare IT, where mobile solutions must operate reliably in low-connectivity settings, such as rural

clinics or during network outages. Research in "Progressive Web Apps: the Definite Approach to Cross-

Platform Development?" explores PWAs' potential as a unified development strategy, noting their limitations

in accessing device-specific features like biometrics, a constraint also faced by Oracle APEX developers [4].

However, the study suggests that PWAs' lightweight nature and web-based deployment make them ideal for

rapid iteration, a benefit amplified by Oracle APEX's low-code framework.

Comparative analyses further contextualize Oracle APEX's role. Traditional web frameworks like React or

Angular require extensive JavaScript expertise for PWA implementation, whereas Oracle APEX abstracts

much of this complexity, as noted in industry reviews [17]. A blog post, "Building a minimal Progressive Web

App (PWA) on Autonomous APEX," demonstrates how Oracle APEX on Autonomous Database can deploy a

basic PWA in under an hour, highlighting its efficiency [14]. Yet, customization beyond built-in features, such

as advanced caching strategies, may demand additional scripting, a trade-off acknowledged in developer

forums [18].

The background of PWAs with Oracle APEX is thus rooted in a convergence of web innovation and

enterprise needs. Studies like those cited provide a robust foundation, revealing both opportunities and hurdles.

Volume 11 Issue 3 @ 2025 IJIRCT | ISSN: 2454-5988

IJIRCT2506029 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 4

As PWAs evolve, Oracle APEX's roadmap, including plans for AI integration and enhanced PWA support,

positions it to address emerging demands [15]. This section sets the stage for a detailed examination of PWA

features, best practices, and real-world applications, grounding the analysis in a rich scholarly and practical

context.

III. FEATURES OF PWA

Progressive Web Apps (PWAs) offer a suite of features that enhance user experience by blending the best of

web and native applications. When developed with Oracle Application Express (APEX), these features are

streamlined through built-in tools and declarative options, making PWA implementation accessible even to

developers with limited JavaScript expertise [2]. This section explores the core features of PWAs within the

Oracle APEX ecosystem, including installability, offline functionality, push notifications, responsive design,

fast load times, security, discoverability, and background sync, supported by practical examples and references

to official documentation and industry insights.

A. Installability

One of PWAs' defining features is their ability to be installed on a user's device, appearing on the home screen

or desktop like a native app, without requiring an app store. In Oracle APEX, this is enabled through the

"Install Progressive Web App" option in the Application Definition settings, introduced in version 20.2 and

refined in subsequent releases [8]. This feature generates a web app manifest, a JSON file specifying the app's

name, icons, and display mode, which browsers use to prompt users to install the PWA. For instance, enabling

this in APEX adds an "Install App" entry to the navigation bar, simplifying the process for end-users [8]. The

manifest can be customized via the User Interface settings, allowing developers to define theme colors and

icon sizes, ensuring a branded experience. Research highlights installability as a key driver of user retention,

with PWAs like Kaporal's achieving a 15% conversion increase partly due to this seamless integration [6].

B. Offline Functionality

PWAs excel in unreliable network conditions by leveraging service workers and scripts that cache content for

offline access. Oracle APEX supports this natively by generating a default service worker when PWA settings

are enabled, caching static assets like CSS and JavaScript files [8]. Developers can further customize offline

behavior by creating a dedicated offline page, a feature introduced in APEX 21.2 [9]. This page, displayed

when lost connectivity, can include static content or cached data, enhancing usability in healthcare fieldwork

scenarios where internet access may be intermittent [3]. A blog post by P.Mushkov, "Create a custom offline

page for your APEX PWA in 21.2," provides a step-by-step guide to implementing this, demonstrating how to

override the default offline response with meaningful content [9]. Studies emphasize offline functionality as a

standout PWA feature, with user satisfaction surveys rating it highly for reliability [13].

C. Push Notifications

Push notifications keep users engaged by delivering real-time updates, a feature Oracle APEX supports

through its PWA framework [10]. Introduced in APEX 23.2, this capability allows developers to configure

notifications via Application Settings, integrating with services like Google Firebase for delivery [10].

Configuring this requires generating a Firebase key pair and linking it to APEX, a process documented in the

official guide [10]. This feature enhances PWAs' utility in time-sensitive applications, aligning with findings

that notifications boost user re-engagement by up to 30% [6].

D. Responsive Design

PWAs must adapt to various screen sizes; a requirement met effortlessly in Oracle APEX through its

Universal Theme, a responsive framework built into the platform [2]. This ensures applications render

Volume 11 Issue 3 @ 2025 IJIRCT | ISSN: 2454-5988

IJIRCT2506029 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 5

optimally on desktops, tablets, and smartphones without additional coding, a critical feature that needs cross-

device compatibility [3]. The Universal Theme leverages CSS Grid and Flexbox, automatically adjusting

layouts based on viewport size, as noted in industry reviews [17]. Developers can fine-tune responsiveness

using APEX's Page Designer, ensuring a consistent experience across platforms, a trait praised in user

perception studies [13].

E. Fast Load Times

Performance is a cornerstone of PWAs, achieved through caching and optimized resource delivery. Oracle

APEX enhances this with a browser cache architecture that stores static files, reducing server requests and

accelerating load times [8]. For example, enabling PWA settings caches the application's shell, HTML, CSS,

and JavaScript, ensuring near-instant access even on subsequent visits. A minimal PWA built on Autonomous

APEX demonstrated load times under two seconds, showcasing this efficiency [14]. Developers can further

optimize by minifying assets and prioritizing critical rendering paths, as suggested in Oracle documentation

[8].

F. Security

PWAs require HTTPS to ensure secure communication, a standard met by Oracle APEX applications

deployed on Oracle servers or cloud environments [8]. This enforces data encryption, protecting sensitive

information—a non-negotiable in healthcare applications, especially when handling patient-related tasks [3].

APEX's integration with Oracle Database adds layers of security, such as role-based access control, enhancing

PWA reliability [2]. Research notes HTTPS as a foundational PWA feature, mitigating risks like man-in-the-

middle attacks [12].

G. Discoverability

Unlike native apps confined to app stores, PWAs are indexable by search engines, improving their visibility.

Oracle APEX PWAs inherit this trait, as they are deployed as web applications, allowing organic discovery

via Google or Bing [1]. This is particularly valuable for public-facing enterprise apps, though it requires SEO

optimization, such as metadata configuration, which APEX supports through its Page Attributes [8]. Studies

highlight discoverability as a cost-effective advantage over native development [12].

H. Background Sync

Though less prominent, background sync allows PWAs to defer tasks until connectivity is restored, a feature

supported by service workers. In Oracle APEX, this is implicitly enabled through the default service worker,

though advanced customization requires JavaScript, as noted in developer forums [18]. This is useful for

syncing form submissions in low-connectivity scenarios, enhancing reliability in applications like field data

collection [11]. According to the roadmap, future APEX releases may expand declarative support for this [15].

I. Integration with Oracle APEX Ecosystem

A unique feature of APEX is its tight integration with Oracle Database, enabling PWAs to leverage SQL and

PL/SQL for dynamic content [2]. This facilitates real-time data updates and reporting, which is critical for

enterprise use cases that rely on database-driven notifications [3]. The low-code environment further simplifies

feature implementation, reducing development time compared to frameworks like React [17].

In summary, Oracle APEX PWAs offer a robust feature set, installability, offline functionality, push

notifications, responsive design, fast load times, security, discoverability, and background sync, enhanced by

APEX's declarative tools and database integration. These features, supported by documentation and real-world

examples [8], [9], [10], position Oracle APEX as a powerful platform for building modern, user centric PWAs.

Volume 11 Issue 3 @ 2025 IJIRCT | ISSN: 2454-5988

IJIRCT2506029 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 6

IV. BEST PRACTICES

Developing Progressive Web Apps (PWAs) with Oracle Application Express (APEX) requires adherence to

best practices to ensure optimal performance, usability, and maintainability. As a low-code platform integrated

with Oracle Database, APEX simplifies PWA implementation through declarative tools. However,

maximizing its potential demands strategic approaches to security, performance, offline functionality, and user

experience [2]. This section outlines key best practices—ensuring HTTPS, optimizing performance, designing

for offline use, making the app installable, implementing service workers, testing across devices, leveraging

APEX components, and maintaining accessibility—supported by references to official documentation and

industry insights.

A. Ensure HTTPS

PWAs require a secure connection via HTTPS to protect data integrity and user privacy, a prerequisite

enforced by modern browsers for features like service workers and push notifications [1]. When deployed on

Oracle servers or cloud environments, Oracle APEX applications inherently support HTTPS, aligning with

this requirement [8]. Developers should verify that the hosting environment uses a valid SSL/TLS certificate,

ideally with automatic renewal, to prevent lapses in security. In healthcare contexts, HTTPS is critical for

safeguarding patient-related data and ensuring compliance with regulations like GDPR [3]. A comprehensive

review notes HTTPS as a foundational PWA practice, reducing risks like data interception [12]. APEX's built-

in security features, such as session state protection, complement this, making it a robust choice for secure

PWA deployment [2].

B. Optimize Performance

Fast load times are a hallmark of PWAs, directly impacting user retention, as evidenced by Kaporal's 60%

bounce rate reduction [6]. In Oracle APEX, performance optimization begins with enabling the PWA caching

architecture, which stores static assets like CSS and JavaScript in the browser cache [8]. Developers should

minify these assets using APEX's built-in tools or external utilities to reduce file sizes, as suggested in

"Building a minimal Progressive Web App (PWA) on Autonomous APEX" [14]. Additionally, prioritizing

critical rendering paths, and loading essential content first enhances perceived speed. Leveraging Oracle

Database's indexing and query optimization for dynamic content ensures rapid data retrieval, a practice vital

for data intensive PWAs [2]. Testing with tools like Lighthouse, integrated into Chrome DevTools, can

identify bottlenecks, aligning with industry standards for PWA performance [19].

C. Design for Offline Use

Offline functionality distinguishes PWAs from traditional web apps, and Oracle APEX supports this through

service workers and customizable offline pages [9]. Best practice involves designing an offline page that

provides meaningful feedback, such as cached data or a user-friendly message, rather than a generic error. The

blog by P. Mushkov details how to override the default offline response, a technique used in scenarios like

healthcare fieldwork where connectivity is unreliable [9]. Developers should cache critical resources, such as

the app shell and key pages, using APEX's service worker settings, ensuring seamless offline operation [8].

User studies highlight offline usability as a top PWA feature, enhancing reliability in low-network conditions

[13].

D. Make the App Installable

Installability enhances user engagement by allowing PWAs to appear on device home screens. In Oracle

APEX, this is achieved by enabling the "Install Progressive Web App" option, which generates a web app

manifest [8]. Best practice includes customizing the manifest via User Interface settings—specifying app

name, icons (at least 192x192 and 512x512 pixels), and theme colors—to ensure a polished, branded

Volume 11 Issue 3 @ 2025 IJIRCT | ISSN: 2454-5988

IJIRCT2506029 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 7

experience. The NHS York PWA leveraged this for easy staff access, integrating seamlessly with mobile

workflows [3]. Testing the install prompt across browsers, especially Chrome and Safari, ensures consistency,

as installation prompts vary slightly [4]. The research underscores installability as a driver of user retention,

mirroring native app convenience [12].

E. Implement Service Workers Effectively

Service workers are the backbone of PWAs, managing caching, offline access, and background sync. Oracle

APEX provides a default service worker, but advanced customization, such as caching dynamic content or

implementing background sync, may require JavaScript, as noted in developer forums [18]. Best practice

involves defining a caching strategy (e.g., cache-first for static assets, network-first for dynamic data) tailored

to the app's needs, as outlined in "APEX as a PWA" [16]. For example, caching static files ensures fast loads,

while fetching fresh data on reconnect enhances app accuracy. Regular updates to the service worker, aligned

with app releases, prevent stale caches, a practice supported by APEX's versioning [8].

F. Test on Multiple Devices and Browsers

Cross-platform compatibility is essential for PWAs, given their broad deployment scope. Oracle APEX's

Universal Theme ensures responsiveness, but developers must test across devices (e.g., iOS, Android,

desktop) and browsers (e.g., Chrome, Safari, Firefox) to verify functionality [2]. The NHS York PWA

required testing on Apple and Android devices to ensure staff usability [3]. Browser inconsistencies,

particularly Safari's partial PWA support, necessitate workarounds like manual icon placement, as noted in

systematic reviews [4], [11]. Tools like BrowserStack or APEX's built-in preview modes facilitate this,

ensuring a consistent experience, a practice praised in industry reviews [17].

G. Leverage Oracle APEX Components

APEX's declarative components, such as interactive reports, forms, and charts, reduce custom coding,

enhancing maintainability and scalability [2]. Best practice involves using these for core functionality rather

than relying heavily on JavaScript [3]. This approach leverages APEX's integration with Oracle Database,

enabling efficient SQL-based data handling, as highlighted in "Exploring Oracle APEX" [2]. Developers

should avoid over-customization outside APEX's framework, as it increases complexity, a pitfall noted in

developer discussions [18]. This practice ensures rapid development and long-term support, aligning with

enterprise needs.

H. Maintain Accessibility

PWAs must be accessible to all users, adhering to standards like WCAG 2.1. Oracle APEX's Universal Theme

includes accessibility features, such as ARIA landmarks, but developers should enhance this with proper

keyboard navigation and screen reader support [8]. Testing with tools like WAVE ensures compliance, a

critical consideration for public-sector apps like NHS York's, which serve diverse staff [3]. Accessibility

improves user inclusivity, a priority emphasized in PWA literature [12].

I. Monitor and Update Regularly

PWAs require ongoing maintenance to address browser updates and user feedback. Oracle APEX's roadmap

suggests future enhancements, like AI integration, which developers should incorporate [15]. Monitoring

performance with analytics (e.g., Google Analytics integrated via APEX plugins) and updating the service

worker and manifest ensure the app remains current [8]. This practice supports long-term reliability, as seen in

Kaporal's sustained PWA success [6].

Volume 11 Issue 3 @ 2025 IJIRCT | ISSN: 2454-5988

IJIRCT2506029 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 8

In conclusion, these best practices—securing with HTTPS, optimizing performance, designing for offline use,

ensuring installability, implementing service workers, testing broadly, leveraging APEX components,

maintaining accessibility, and updating regularly—maximize the effectiveness of PWAs in Oracle APEX.

Supported by documentation and real-world examples [8], [9], [10], they enable developers to deliver robust,

user-centric applications efficiently.

V. CASE STUDY

Progressive Web Apps (PWAs) built with Oracle Application Express (APEX) have demonstrated significant

potential in healthcare, where reliability, accessibility, and real-time communication are paramount. A

compelling real-world example is the mobile tasking application developed for NHS York Teaching Hospital,

a UK-based healthcare provider, which replaced its outdated bleep system with a PWA leveraging APEX's

capabilities [3]. This case study illustrates how PWAs can transform operational workflows in clinical settings,

offering cross-platform compatibility, offline functionality, and push notifications while aligning with best

practices outlined in prior sections. This example, supported by industry documentation and empirical

outcomes, underscores APEX's role in delivering scalable, user-centric healthcare solutions.

The NHS York Teaching Hospital faced challenges with its traditional bleep system—a pager-based

communication tool that was slow, unidirectional, and prone to delays, especially during high-demand periods

like winter surges. The hospital partnered with DSP-Explorer, an Oracle solutions provider, to develop a PWA

using APEX, aiming to enhance staff coordination and patient care efficiency [3]. Deployed in a multi-site

environment, the application needed to function seamlessly across Apple and Android devices, a requirement

met by APEX's Universal Theme and PWA features [2], [8]. The project's success hinged on replacing bleeps

with a modern, installable app that staff could access directly from their mobile home screens, eliminating the

need for dedicated hardware or separate native apps for each platform.

Key PWA features were integral to the solution. Installability, enabled through APEX's "Install Progressive

Web App" option, allowed the app to be added to staff devices with a customized manifest defining icons and

branding, enhancing accessibility [8]. Cross-platform compatibility ensured uniform performance on iOS and

Android, reducing training overhead and deployment costs compared to native development [3]. The app

operated in full-screen mode, mimicking a native experience, which improved usability for busy healthcare

workers. Offline functionality, supported by APEX's service worker caching, ensured staff could view cached

tasks during network outages—a critical feature in hospital wards with inconsistent Wi-Fi [9]. This aligns with

findings that offline reliability boosts user trust in PWAs, particularly in mission-critical settings [13].

Push notifications were a cornerstone of the application, replacing bleep alerts with real-time, database-

driven messages. Integrated with Google Firebase and configured via APEX 23.2's notification settings, the

system used PL/SQL code to trigger alerts from the Oracle Database, instantly notifying staff of urgent tasks

[10]. For example, a nurse could receive a notification to administer medication, with details pulled directly

from the hospital's database, improving response times over the bleep system's manual process [3]. This

feature, combined with rapid update deployment—possible without app store approvals—enabled developers

to roll out enhancements quickly, ensuring the app evolved with clinical needs. The NHS York case reported a

30% reduction in task assignment delays, a metric echoing broader PWA engagement benefits like Kaporal's

30% re-engagement increase via notifications [6].

The development process leveraged APEX's low-code strengths, minimizing custom coding using

declarative components for task lists and forms [2]. Security was ensured through HTTPS, a standard in

APEX deployments, protecting sensitive patient data in compliance with NHS standards [8]. Testing across

devices confirmed responsiveness, addressing browser inconsistencies noted in PWA literature [4]. The result

was a scalable solution that improved workflow efficiency, reduced reliance on legacy hardware, and

supported staff during peak operational stress, such as winter flu seasons.

Volume 11 Issue 3 @ 2025 IJIRCT | ISSN: 2454-5988

IJIRCT2506029 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 9

This case study highlights PWAs' transformative impact in healthcare when built with Oracle APEX. The

NHS York application demonstrates how features like installability, offline access, and push notifications—

enabled by APEX's framework [8], [9], [10]—address real-world challenges, aligning with best practices like

performance optimization and cross-device testing [19]. It offers a model for other healthcare providers

seeking cost-effective, reliable mobile solutions, reinforcing APEX's value in enterprise PWA development.

VI. CHALLENGES AND LIMITATIONS

While Progressive Web Apps (PWAs) built with Oracle Application Express (APEX) offer significant

advantages—such as rapid development and robust features—they are not without challenges and limitations.

These hurdles stem from inherent PWA constraints, browser inconsistencies, and APEX-specific

implementation complexities, impacting their adoption in enterprise settings like healthcare [3]. This section

explores key challenges, including browser compatibility, limited device hardware access, performance

overhead, implementation complexity, integration with legacy systems, and user adoption barriers, drawing on

systematic reviews, case studies, and developer experiences to provide a balanced perspective [4], [11].

A. Browser Compatibility

A primary challenge for PWAs is inconsistent browser support, particularly on iOS, where Safari lags behind

Chrome and Firefox in implementing PWA features fully. Research in "Progressive Web Apps: the Definite

Approach to Cross-Platform Development?" highlights that while service workers and manifests are supported

across major browsers, nuances like notification persistence and home screen installation vary, especially on

iOS [4]. For Oracle APEX PWAs, this affects features like push notifications and installability, requiring

developers to test extensively across platforms, as seen in the NHS York Teaching Hospital case, where both

Apple and Android compatibility were critical [3]. A systematic review notes that iOS’s partial support—e.g.,

limited service worker caching—can degrade offline functionality, forcing APEX developers to implement

workarounds like static offline pages [11], [9]. This inconsistency complicates achieving a uniform user

experience, a persistent limitation despite APEX’s Universal Theme aiding responsiveness [2].

B. Limited Access to Device Hardware

Unlike native apps, PWAs have restricted access to device hardware, such as cameras, GPS, or biometrics, due

to web API limitations. This constraint is evident in Oracle APEX as the platform relies on standard web

capabilities rather than native SDKs [8]. For healthcare applications like NHS York’s, where biometric

authentication could enhance security, this limitation necessitates alternative solutions, such as server-side

authentication, increasing complexity [3]. A comprehensive review underscores that while emerging APIs

(e.g., Web Bluetooth) are closing this gap, their adoption is slow and browser-dependent, leaving APEX

PWAs less feature-rich than their native counterparts in hardware-intensive use cases [12]. This trade-off

sacrifices functionality for cross-platform simplicity, a notable limitation in specialized domains.

C. Performance Overhead

PWAs aim for fast load times, but complex applications can incur performance overhead, particularly with

large datasets or dynamic content. Oracle APEX’s caching architecture improves static asset delivery, yet

handling extensive database queries—common in enterprise apps—can slow response times if not optimized

[8], [14]. Systematic studies identify performance as a challenge when PWAs scale beyond simple use cases,

with caching strategies struggling under heavy loads [11]. For instance, the NHS York PWA required careful

query optimization to maintain responsiveness during peak usage [3]. Developers must balance caching and

real-time data fetching, a task complicated by APEX’s reliance on declarative components, which may not

scale as efficiently as custom JavaScript solutions [18]. This limitation highlights a trade-off between APEX’s

ease of use and raw performance.

Volume 11 Issue 3 @ 2025 IJIRCT | ISSN: 2454-5988

IJIRCT2506029 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 10

D. Implementation Complexity

While APEX simplifies PWA development, advanced features like custom service workers or background

sync demand JavaScript expertise beyond its low-code framework [16]. Developer forums note that

customizing the default service worker—e.g., for dynamic caching—requires manual scripting, increasing the

learning curve for APEX users accustomed to declarative tools [18]. The "APEX as a PWA" series warns that

misconfigured service workers can lead to stale content or broken offline functionality, a risk mitigated only

through rigorous testing [16]. For the NHS York PWA, integrating Firebase notifications required PL/SQL

and external API knowledge, adding complexity to an otherwise streamlined process [10], [3]. This challenge

limits APEX’s appeal for teams lacking web development skills, contrasting with its low-code promise.

E. Integration with Legacy Systems

Enterprise environments often rely on legacy systems, and integrating PWAs with these can be problematic.

Oracle APEX excels with Oracle Database, but connecting to older, non-Oracle systems—like those in

healthcare IT—requires custom APIs or middleware, as noted in industry reviews [17]. The NHS York case

likely faced this, bridging the PWA with existing hospital databases, a task that could delay deployment if data

schemas misalign [3]. Research identifies integration as a recurring PWA challenge, exacerbated in APEX by

its database-centric design, which may not natively support heterogeneous environments [11]. This limitation

demands additional resources, undermining rapid deployment goals.

F. User Adoption Barriers

PWAs face user adoption hurdles due to unfamiliarity with installation processes or skepticism about web-

based apps replacing native ones. In the NHS York scenario, staff accustomed to bleeps required training to

adopt the PWA despite its installability and notifications [3]. User perception studies reveal that installation

prompts confuse some users, particularly on iOS, where the process is less intuitive than Android’s [13].

APEX PWAs must overcome this through straightforward onboarding—e.g., in-app guidance—adding to

development effort [8]. This limitation reflects a broader PWA challenge: convincing users of their

equivalence to native apps, a barrier APEX alone cannot fully resolve.

In conclusion, while Oracle APEX PWAs offer powerful features, challenges like browser compatibility,

hardware access, performance, complexity, integration, and adoption persist [4], [11]. These limitations,

evident in cases like NHS York [3], require strategic mitigation—e.g., testing, optimization, and training—to

ensure success, balancing APEX’s strengths against inherent PWA constraints.

VII. FUTURE RESEARCH DIRECTIONS

The evolution of Progressive Web Apps (PWAs) with Oracle Application Express (APEX) promises to

reshape enterprise application development, particularly in sectors like healthcare, where scalability and

accessibility are critical [3]. As web technologies advance and Oracle APEX continues to refine its low-code

platform, several future directions emerge: enhanced browser support, adoption of new web APIs, expanded

APEX PWA features, increased enterprise adoption, and integration with emerging technologies like AI.

These directions address current limitations—such as browser inconsistencies and hardware access—while

capitalizing on PWAs’ strengths, supported by industry roadmaps, research, and real-world trends [4], [15].

A. Enhanced Browser Support

Browser compatibility, a persistent challenge for PWAs, is poised for improvement, particularly with Apple’s

gradual enhancement of Safari’s PWA capabilities [4]. Recent iOS updates have improved service worker

support and home screen integration, reducing the gap with Chrome and Firefox, as noted in web development

analyses [1], [20]. For Oracle APEX PWAs, this means more consistent offline functionality and push

notifications across platforms, which is critical for applications like the NHS York Teaching Hospital’s task

Volume 11 Issue 3 @ 2025 IJIRCT | ISSN: 2454-5988

IJIRCT2506029 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 11

manager, which requires broad device compatibility [3]. Future Safari advancements—potentially full

notification persistence and better caching—could streamline APEX testing efforts, currently burdened by

iOS-specific workarounds [11]. As browsers align on PWA standards, APEX developers can expect a more

seamless deployment experience, amplifying PWAs’ cross-platform appeal.

B. Adoption of New Web APIs

Emerging web APIs promise to expand PWA capabilities, addressing limitations like restricted hardware

access [12]. APIs such as Web Assembly for high-performance computing and the File System Access API

for native-like file handling are gaining traction, with partial support already in Chrome and Edge [16]. For

Oracle APEX, integrating these could enhance PWAs’ functionality—e.g., enabling complex data processing

or local file management in healthcare apps—without sacrificing web deployment simplicity [2]. The Web

Bluetooth API, though experimental, could allow APEX PWAs to interface with medical devices, a leap

forward for cases like NHS York [3]. Research suggests these APIs will mature over the next 3-5 years, and

Oracle’s roadmap hints at potential adoption, enhancing APEX’s PWA toolkit [15]. This evolution could

position APEX PWAs closer to native app parity, broadening their enterprise utility.

C. Expanded APEX PWA Features

Oracle APEX’s development roadmap signals a commitment to advancing PWA support, building on its

foundation since version 20.2 [7], [15]. Planned enhancements include control badges for installed PWAs

(e.g., unread task counts), deeper service worker customization, and improved push notification APIs, as

outlined in the APEX PWA Reference roadmap [21]. These features would enhance user engagement—

imagine the NHS York PWA displaying pending tasks directly on its icon [3]. Additionally, APEX’s general

roadmap mentions AI integration and CI/CD improvements, which could automate PWA optimization and

deployment, reducing the complexity noted in current implementations [18], [15]. Such advancements would

solidify APEX’s position as a leading low-code platform for PWAs, streamlining development while

addressing performance and scalability concerns [11].

D. Increased Enterprise Adoption

As PWAs gain traction for their cost-effectiveness and cross-platform reach—evidenced by a 60% bounce rate

reduction at Kaporal [6]—enterprise adoption is likely to surge, especially in healthcare. The NHS York case

demonstrates PWAs’ value in replacing legacy systems with mobile-friendly solutions, a trend applicable to

other sectors like finance and logistics [3]. Oracle APEX’s database integration and security features make it

ideal for data-driven enterprises, and as awareness grows—spurred by case studies and Oracle’s marketing—

adoption could accelerate [2], [8]. Future directions include targeting industries with offline needs, such as

rural healthcare, where PWAs’ lightweight nature excels [9]. Research predicts a 25% annual growth in PWA

usage by 2027, with APEX well-positioned to capture this market [12].

E. Integration with Emerging Technologies

The convergence of PWAs with technologies like AI and 5G offers transformative potential. Oracle APEX’s

roadmap includes AI-driven features, such as predictive analytics, which could enhance PWAs with real-time

insights—e.g., predicting task urgency in the NHS York app [15]. 5G’s low latency and high bandwidth could

improve APEX PWA performance, enabling richer media or real-time collaboration, as suggested in web

development guides [20]. Integrating these via APEX’s declarative tools could simplify adoption, addressing

complexity challenges [16]. This direction aligns with enterprise demands for intelligent, responsive

applications, positioning APEX PWAs as future-ready solutions.

In conclusion, the future of PWAs with Oracle APEX lies in leveraging browser improvements, new APIs,

enhanced platform features, enterprise growth, and emerging tech integration [15], [20]. These advancements

Volume 11 Issue 3 @ 2025 IJIRCT | ISSN: 2454-5988

IJIRCT2506029 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 12

promise to mitigate limitations like browser support and hardware access [4], building on successes like NHS

York [3] and driving PWAs toward broader, more sophisticated applications.

VIII. CONCLUSION

PWAs’ core features—installability, offline functionality, push notifications, responsive design, fast load

times, security, and discoverability—are seamlessly integrated into Oracle APEX, enhancing its appeal as a

development platform [1], [8]. Installability, enabled via APEX’s web app manifest, allows apps to reside on

device home screens, as demonstrated by the NHS York Teaching Hospital’s task manager, improving staff

accessibility [3], [8]. Offline functionality, supported byproduct service workers and customizable offline

pages, ensures reliability in low-connectivity settings, a critical advantage in healthcare fieldwork [9]. Push

notifications, integrated with Firebase in APEX 23.2, replace legacy systems like bleeps with real-time alerts,

boosting operational efficiency [10], [3]. APEX’s Universal Theme ensures responsiveness, while its caching

architecture delivers fast load times, aligning with performance metrics like Kaporal’s 60% bounce rate

reduction [2], [6], [8]. Security via HTTPS and discoverability via web indexing further solidify PWAs’

enterprise viability [8], [12].

Best practices amplify these features’ effectiveness. Ensuring HTTPS, optimizing performance with tools

like Lighthouse, designing meaningful offline experiences, and testing across devices—practices rooted in

APEX’s framework—maximize usability and reliability [8], [9], [19]. Leveraging APEX’s declarative

components minimizes complexity, as seen in the NHS York PWA, while accessibility and regular updates

ensure inclusivity and relevance [3], [2]. These practices, distilled from industry guides and user studies,

enable developers to deliver PWAs that meet enterprise demands efficiently [13], [16].

The NHS York case study exemplifies PWAs’ real-world impact, replacing an outdated bleep system with a

cross-platform, notification-driven solution that reduced task delays by 30% [3]. Built with APEX, this PWA

highlights how features like installability and offline access address healthcare challenges, offering a scalable

model for other providers. Its success mirrors broader PWA benefits—cost-effective deployment and

enhanced engagement—seen in commercial cases like Kaporal [6]. This evidence reinforces APEX’s role as a

practical, impactful PWA facilitator, particularly in data-driven sectors.

However, challenges temper PWAs’ promise. Browser inconsistencies, notably Safari’s limited PWA

support, complicate deployment, requiring extensive testing [4]. Limited hardware access restricts

functionality compared to native apps, a drawback in biometric-reliant healthcare scenarios [11]. Performance

overhead with complex datasets, implementation complexity beyond APEX’s low-code scope, and integration

with legacy systems pose additional hurdles, as noted in systematic reviews [11], [18]. User adoption barriers,

such as unfamiliarity with PWA installation, further challenge widespread acceptance, necessitating training

and onboarding [13]. These limitations, evident in the NHS York deployment, highlight areas where APEX

PWAs must evolve to compete with native solutions [3].

However, the future directions offer hope for overcoming these obstacles. Enhanced browser support,

particularly from Safari, promises greater consistency, easing APEX development [20]. New web APIs like

WebAssembly and File System Access could expand functionality, bridging hardware gaps [16]. Oracle

APEX’s roadmap—featuring control badges, AI integration, and CI/CD enhancements—suggests a trajectory

toward more robust PWAs, potentially revolutionizing apps like NHS York’s with predictive features [15],

[21]. Increased enterprise adoption, driven by cost and scalability benefits, and 5G and AI integration position

APEX PWAs for growth, especially in healthcare’s remote and real-time needs [6], [20]. These advancements

align with research predicting a 25% annual rise in PWA usage by 2027, with APEX poised to lead in low-

code innovation [12].

All around, PWAs with Oracle APEX offer a compelling blend of accessibility, functionality, and

efficiency, as evidenced by features, best practices, and cases like NHS York [3], [8], [10]. While challenges

Volume 11 Issue 3 @ 2025 IJIRCT | ISSN: 2454-5988

IJIRCT2506029 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 13

like browser support and hardware access persist, future enhancements promise to mitigate these, expanding

PWAs’ reach [4], [15]. Developers are encouraged to explore APEX’s capabilities, leveraging resources like

official documentation and community forums for more profound mastery [8], [18]. This study contributes to

the academic discourse on PWAs, affirming APEX’s role in shaping the next generation of enterprise

applications, with healthcare as a prime beneficiary.

ACKNOWLEDGMENT

The author expresses his gratitude to the Oracle APEX development community for their invaluable resources,

including documentation, forums, and blogs, which provided critical insights into PWA implementation.

Special thanks to the NHS York Teaching Hospital and DSP-Explorer for sharing their case study, offering a

practical foundation for this research. He also acknowledges the contributions of academic researchers whose

systematic reviews and surveys enriched this analysis. This work reflects a collaborative effort to advance

understanding of PWAs in enterprise contexts, and the author is indebted to all who made it possible.The

author would also like to disclose the use of the Grammarly (AI) tool solely for editing and grammar

enhancements.

REFERENCES

[1] P. LePage and S. Richard, “What are Progressive Web Apps?,” web.dev, Jan. 06, 2020. Available:

https://web.dev/articles/what-are-pwas.[Online]Accessed: Mar. 03, 2025.

[2] R. Bevz, “Exploring Oracle APEX: A Practical Guide – Avenga,” Avenga. Available:

https://www.avenga.com/magazine/exploring-oracle-apex/ [Online] Accessed: Mar. 06, 2025.

[3] DSP, “NHS York Oracle APEX Case Study,” DSP, From Ground to Cloud. Available:

https://www.dsp.co.uk/nhs-york-apex-case-study[Online]Accessed: Mar 16, 2025.

[4] T. A. Majchrzak, A. Biørn-Hansen, and T.-M. Grønli, “Progressive Web Apps: the Definite Approach to

Cross-Platform Development?,” in Proceedings of the Annual Hawaii International Conference on

System Sciences, Hawaii International Conference on System Sciences, 2018. Available:

https://doi.org/10.24251/hicss.2018.718

[5] J. Neagu, “Progressive Web App (PWA) Statistics 2023,” Medium, Feb. 13, 2024, Available:

https://medium.com/@julianneagu/progressive-web-app-pwa-statistics-2023-46950788b513.

[Online]Accessed: Apr. 02, 2025.

[6] R. Hibbert, “Improve online engagement,” Front-Commerce. Available:https://www.front-

commerce.com/improve-online-engagement-kaporal-case-study/ [Online] Accessed: Apr. 02, 2025.

[7] A. Rajagopal, “Progressive Web Application –Next Generation Mobile Application Development with

Oracle Apex,” Doyensys Blog. Available: https://doyensys.com/blogs/progressive-web-application-

next-generation-mobile-application-development-with-oracle-apex/[Online]Accessed: Mar. 20, 2025.

[8] C. Cho, “Creating a Progressive Web Application (PWA),” Oracle Help Center. Available:

https://docs.oracle.com/en/database/oracle/application-express/21.2/htmdb/crreating-a-progressive-

web-application.html[Online]Accessed: Mar. 12, 2025.

[9] P. Mushkov, “Create a custom offline page for your APEX PWA in 21.2,” APEX App Lab. Available:

https://apexapplab.dev/2022/01/12/create-a-custom-offline-page-for-your-apex-pwa-in-21-2/

[Online]Accessed: Mar. 16, 2025.

[10] R. Allen, “Creating a Progressive Web App (PWA),” Oracle Help Center. Available:

https://docs.oracle.com/en/database/oracle/apex/23.2/htmdb/creating-a-progressive-web-app.html

[Online]Accessed: Mar. 16, 2025.

Volume 11 Issue 3 @ 2025 IJIRCT | ISSN: 2454-5988

IJIRCT2506029 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 14

[11] R. Fauzan, I. Krisnahati, B. D. Nurwibowo, and D. A. Wibowo, “A Systematic Literature Review on

Progressive Web Application Practice and Challenges,” IPTEK The Journal for Technology and

Science, vol. 33, no. 1, p. 43, Jul. 2022, doi: 10.12962/j20882033.v33i1.13904.

[12] M. Shankar Srinivas Lingolu and M. Kumar Dobbala, “A Comprehensive Review of Progressive Web

Apps: Bridging the Gap Between Web and Native Experiences,” International Journal of Science and

Research (IJSR), vol. 11, no. 2, pp. 1326–1334, Feb. 2022, doi: 10.21275/sr24517172948.

[13] T. Marchetto and M. Morandini, “User Perceptions of Progressive Web App Features: An Analytical

Approach and a Systematic Literature Review,” Springer Nature Singapore. Available:

https://link.springer.com/chapter/10.1007/978-981-97-4581-4_14 [Online].Accessed: Mar. 16, 2025.

[14] J. Michler, “Building a minimal Progressive Web App (PWA) on Autonomous APEX - PROMATIS

AT,” PROMATIS - Geschäftsprozesse, Oracle-Applikationen und Technologien. Available:

https://promatis.com/at/en/building-a-minimal-progressive-web-app-pwa-on-autonomous-apex/

[Online].Accessed: Apr. 02, 2025.

[15] Oracle Corp., “Roadmap,” Oracle APEX. Available:

https://apex.oracle.com/en/learn/resources/roadmap/ [Online].Accessed: Apr. 06, 2025.

[16] VincentMorneau, “APEX as a PWA: Part 1,” Vincent Morneau Blog, Jul. 31, 2018. Available:

https://vmorneau.me/apex-pwa-part1/ [Online]Accessed: Mar. 12, 2025.

[17] Rodrigo-Mesquita, “Oracle Application Express (APEX) Reviews, Competitors and Pricing,” PeerSpot.

Available: https://www.peerspot.com/products/oracle-application-express-apex-reviews

[Online].Accessed: Mar. 12, 2025.

[18] VincentMorneau, “APEX as a PWA: Part 5,” Vincent Morneau Blog, Jul. 31, 2018. Available:

https://vmorneau.me/apex-pwa-part5/ [Online].Accessed: Mar. 26, 2025.

[19] Google Inc., “Introduction to Lighthouse,” Chrome for Developers, Sep. 27, 2016. Available:

https://developers.google.com/web/tools/lighthouse [Online].Accessed: Mar. 22, 2025.

[20] A. J. D. R. — S. Magazine, “Uniting Web And Native Apps With 4 Unknown JavaScript APIs —

Smashing Magazine,” Smashing Magazine. Available:

https://www.smashingmagazine.com/2024/06/uniting-web-native-apps-unknown-javascript-apis/

[Online].Accessed: Apr. 06, 2025.

[21] Oracle Corp., “Roadmap,” APEX PWA Reference. Available:

https://apex.oracle.com/pls/apex/r/apex_pm/apex-pwa-reference/roadmap. [Online].Accessed: Apr. 06,

2025.

