
Volume 11 Issue 3 @ 2025 IJIRCT | ISSN: 2454-5988

IJIRCT2506017 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 1

Automatic Penetration Testing Using Python

John Komarthi

San Jose, CA

john.komarthi@gmail.com

Abstract

Automatic penetration testing is where software and scripts are used to simulate attacks on systems to

find any security weaknesses or vulnerabilities. This whitepaper will explore how Python is used to

enhance automated penetration testing, This paper will also cover the fundamental concepts,

methodologies, tools, and future developments in this area. The paper will explore what automatic

penetration testing entails and how the simplicity of Python and its rich library ecosystem make it the

preferred language for security automation. The methodology to conduct automatic penetration

testing is shown, along with the common practices, scripting techniques, and integration with popular

tools and frameworks. The limitations of current automation are a lack of human context, difficulty

with complex multi-step attacks, and false positives. Strategies to overcome these challenges by

blending automation and human expertise along with advanced AI techniques will also be discussed.

Real-world use cases from industry will be explored to demonstrate the impact of automated testing,

including continuous security validation of enterprise environments and cost savings that can be

achieved through automated penetration testing platforms. Future directions and research

opportunities such as integration of machine learning to create more intelligent automated

penetration testing agents.

Keywords: Automated Penetration Testing, Python Security, Vulnerability Assessment,

Cybersecurity Automation, DevSecOps, OWASP ZAP, Metasploit Integration, Cloud Pentesting

(AWS, Pacu), IoT Security, Reinforcement Learning, PentestGPT, Breach and Attack Simulation

(BAS), Post-Exploitation Automation, CI/CD Security Testing

INTRODUCTION

Penetration testing is a security practice where systems are evaluated by simulating actual attacks to uncover

vulnerabilities before the attackers find them. This has become a critical component of cyber defense, with

the global penetration testing market set to exceed $5 billion annually by 2031 [2]. Traditional penetration

testing is a labor-intensive process that requires skilled experts to manually probe systems, analyze the

responses, and craft exploits. This huge reliance on human expertise results in tests that are not frequent and

time-consuming, thus resulting in organizations being exposed to attackers between testing cycles [1]. The

demand for security testing exceeds the actual supply of qualified professionals, and an estimated annual

number of one million cybersecurity jobs are not filled because of this. Automation in the process of

penetration testing offers a solution to scale the penetration testing efforts and perform testing frequently

without a proportional increase in cost or people.

Automated penetration testing is where software tools and scripts are used to perform the tasks of a human

penetration tester [1]. Some or all of the tasks can be automated; rather than manually running scans and

exploits, the tester can use automation and streamline the process end-to-end. Python especially turned out

to be a dominant language for security automation. It is easy to use, has cross-platform support, and has an

extensive library collection that allows penetration testers to script and perform complex tasks efficiently

Volume 11 Issue 3 @ 2025 IJIRCT | ISSN: 2454-5988

IJIRCT2506017 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 2

[3]. The active security community of Python has created thousands of tools and libraries that cover the vast

majority of aspects in penetration testing, from network scanning to payload generation, and exploitation

analysis [3]. This proves Python to be an ideal foundation for building automated penetration testing

frameworks.

Automation can drastically increase the speed and the breadth of security assessments. Repetitive tasks such

as port scanning, vulnerability enumeration, and brute-force attacks can be easily executed using Python

scripts compared to a human working interactively. Automated tools can be operated continuously, which

results in continuous risk validation instead of a one-time risk assessment. For instance, integrating the

automated penetration tests into a continuous integration (CI/CD) pipeline will allow every new code

release or infrastructure change to be evaluated for any security risks in real time [4]. The benefits of

automation include reduced testing costs, frequent discovery of emerging threats, and broader coverage of

assets. Industry case study revealed that a particular organization achieved a jaw-dropping 80% cost savings

with zero false positives by switching to an automated penetration testing solution [5]. This highlights the

efficiency that can be gained using automated penetration testing.

Automated penetration testing using Python also comes with its own set of challenges, and certain aspects

require human intuition and expertise that automated tools lack [6]. It is important to understand limitations

along with the capabilities of Python-driven automation.

The process of penetration testing typically involves reconnaissance, scanning, vulnerability analysis,

exploitation, and post-exploitation analysis. Traditional vulnerability scanners automatically detect known

issues by checking known vulnerabilities, while penetration testing goes further by exploiting the

vulnerabilities to validate them and detect attack paths [7].

The role of Python in penetration testing has grown; many core security tools are written in Python or offer

Python bindings. The readability and concise syntax enable security engineers to develop custom scripts.

Python has libraries like Scapy, Requests, BeautifulSoup, subprocess, pexpect, etc. [3]. One notable

example of Python-based penetration testing frameworks is w3af, a web vulnerability scanner written in

Python [8]. RouterSploit focuses on IoT and router exploits. Python is also used in SQLmap for SQL

injection and theHarvester for reconnaissance. On the commercial side, tools like Core Impact and

Immunity Canvas (written in Python), Pentera, and Picus use automation and scripting [7].

METHODOLOGY

Performing automated penetration testing using Python involves creating a structured process that will

mirror the phases of manual penetration testing. General methodology, as discussed previously, includes

reconnaissance and information gathering, scanning and enumeration, vulnerability identification,

exploitation, post-exploitation, and reporting. The outline of how each stage can be automated using Python

and the best practices will be discussed to ensure the automated process is effective and safe.

Reconnaissance and Information Gathering: The goal in the initial phase is to collect as much

information as possible about the target. Reconnaissance can be automated by using Python scripts that

query the public databases and APIs. For instance, a script may use Python-whois and DNS query libraries

to enumerate domain information, or use APIs like Shodan (via the Shodan Python library) to find any open

ports and services of the target IP range. Tools such as the Harvester automate OSINT queries to collect

emails, subdomains, and employee names from search engines, PGP key servers, and other sources [3]. We

ensure that no initial lead is missed because of human oversight by automating the recon. The script

Volume 11 Issue 3 @ 2025 IJIRCT | ISSN: 2454-5988

IJIRCT2506017 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 3

systematically goes through the list of intelligence sources and compiles the results into a structured format

for further scanning.

Scanning and Enumeration: The next stage is to actively scan targets to find any open ports, services, or

any other entry points. Python can use native libraries or invoke external scanners. The most common

approach is to drive Nmap through Python; the Python-nmap library allows the Python script to launch

Nmap scans and parse the XML/JSON results within Python for immediate processing [3]. For example, the

script will scan a target subnet for open ports and hosts, and after the results are in, automatically filter for

specific services that are of interest.

If a service like FTP or SMB is detected, the script will trigger the functions to collect more details (banner

grabbing, user listings, version detection, etc.), thus several services can be automated together. This

modular, trigger-based approach is followed by the Automated Penetration Testing Toolkit (APT2), an

open-source framework in Python [10]. APT2 chains data from one module to drive the next, starting with

an Nmap scan, the discovered ports or services become the triggers for enumeration modules. The best

approach is to design Python automation as a set of modules for each service or protocol, and logic that will

call for the modules when relevant triggers are seen. This results in a dynamic attach path generation, where

the sequence of actions is not hard-coded and is determined from the target’s configuration [10].

Vulnerability Identification: After the services and the software versions are identified, automation can

cross-check for any known vulnerabilities. Python can cross-reference service banners against existing

vulnerability databases. For example, a script may use an API for the CVE database or use local data to

observe if the detected version of the service has any known critical exploits. Another approach is to

integrate with vulnerability scanners such as OpenVAS or Nessus, using their APIs and Python clients.

Instead of listing all the vulnerabilities, a smart automated pentest script would triage and focus on paths

that can be exploited. Some Python scripts have a functionality to search, querying Metasploit’s module

database or Exploit-DB automatically [3].

Exploitation: The automation tries to actively compromise the target using the identified vulnerabilities in

this phase. Python can perform exploitation with direct exploit scripts or by interfacing with Metasploit via

its RPC API (e.g., pymetasploit3 library). An automated tool like AutoSploit can connect to Shodan and

identify vulnerable hosts and launch Metasploit to exploit them [9]. Python-based tools can also use libraries

like requests to automate SQL injection and XSS payload delivery to check for any signs of success, as

SQLmap does. For a brute force attack, libraries like paramiko are used. Best practices include having kill

switches and limiting attack attempts to prevent any unintentional system damage.

Post-Exploitation and Lateral Movement: After a system is compromised, automated scripts do privilege

escalation, data exfiltration, and lateral movement. A Python script can use the harvested credentials to try

remote logins on neighboring hosts via SSH or SMB, or launch post-exploitation modules from Metasploit

through API calls. Some of the automated frameworks map a graph of compromised systems and use it to

coordinate multi-hop exploitation strategies [7]. These behaviors emulate what actual attackers do in an

Advanced Persistent Threat (APT) scenario and help the defenders identify the weak points in their

detection and response capabilities.

Reporting and Reset: In the final phase, reports are generated, as the Python scripts collect the results, they

will populate HTML, PDF, or markdown reports with vulnerability summaries, exploited hosts, and

evidence collected (like screenshots or command output). Tools generate detailed logs while execution

Volume 11 Issue 3 @ 2025 IJIRCT | ISSN: 2454-5988

IJIRCT2506017 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 4

using Python’s built-in logging module. The automation test created accounts or changed configurations, the

reset phase will ensure that the changed configurations are reverted, or at least logged for manual follow-up

[7].

GENERAL PRACTICES:

● Modularity: As described break down the tasks into categories (recon, scan modules, exploit

modules, etc.). This makes it easier to update and targeted execution [10].

● Decision Logic: Use logic to decide the next steps based on the results. Basic rule engines or

decision trees can be coded to emulate human reasoning (e.g., use brute-force only if the login page

is detected and stop if credentials succeed).

● Safeguards: Implement limits for brute-force attempts, scan the duration, and ensure that all the

actions are against in-scope targets by using target verifications. This will prevent the automation

from causing unintended harm.

● Stealth: A manual pentester generally adjusts the pace to avoid Intrusion Detection Systems (IDS).

Automated testing can create high traffic and loud signatures if not throttled. Python scripts can

include delays, randomize the order of attacks, and mimic human-like patterns. Stealth is generally

needed while testing the blue team's response.

● Logging: The automation should log every action and result; this helps in debugging the automation

and provides a trail for the final report. Python’s logging framework is used to record events in

detail.

From following such a methodology, automated penetration testing will be established as a repeatable and

systematic process. Python scripts will execute a playbook of attacks that adapt to the target environment.

This methodology can be applied for automation web app tests, network assessment, or cloud security

review.

IMPLEMENTATION:

Implementing automated penetration testing using Python involves utilizing Python tools and libraries that

are available for security testing, along with writing custom code to integrate these components. The key

aspects of leveraging Python libraries for common pentesting tasks, integrating open-source tools via

Python, will be discussed, and example frameworks will be demonstrated.

1. Network Scanning and Enumeration with Python:

Network reconnaissance is the fundamental part of pentesting, and Python simplifies it using

libraries and system calls. The implementation uses the subprocess module to call for command-line

scanners such as Nmap and then parses the output. For instance subprocess.run(["nmap","-oX",

"scan.xml","-p","-","-sV", target]) can be called to perform a full port scan, with service detection on

the target, which will output XML. Python’s XML parser can be used to extract open ports and open

banners, which is a fundamental part of pentesting, and Python simplifies this via libraries and

system calls. A straightforward implementation uses the subprocess module to call command-line

scanners like Nmap and then parses the output. For example, one could call

subprocess.run(["nmap","-oX", "scan.xml","-p","-","-sV", target]) to perform a full port scan with

service detection on a target, outputting XML. Then use Python’s XML parser to extract open ports

and service banners. However, a more Pythonic approach is to use libraries like python-nmap or

Volume 11 Issue 3 @ 2025 IJIRCT | ISSN: 2454-5988

IJIRCT2506017 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 5

libnmap that wrap Nmap’s functionality. Using python-nmap, a script can start an Nmap scan and

directly receive results in a Python object that allows conditional logic.

For instance, the script can decide which follow-up actions to perform. If a web service is found on port

80/443, requests can be used to trigger an automated web scanner.

2. Automating Web Application Testing:

Python is great for automating web security tests. Using the requests library, one can script HTTP

requests and check the responses for signs of any vulnerabilities, like injecting a single quote into

parameters to test for SQL errors. BeautifulSoup can be used to parse HTML to identify the hidden

fields or exploitable forms. Python integrates well with tools like OWASP ZAP, and can be used for

deeper testing. API allows to launch the scans, spidering sites, and pulling vulnerability results. This

makes it perfect for CI/CD pipelines where every deployment will be auto-tested. Selenium is also

handy for automating browser actions, like testing login flows or spotting stored XSS. Combining

ZAP for general scans and Python scripts for custom checks makes a solid setup; the results can be

merged to get a complete view of web app security.

3. Using Metasploit and Other Exploitation Frameworks:

Python’s pymetasploit3 library lets scripting of Metasploit actions such as launching EternalBlue

against a vulnerable SMB service [3]. Tools like AutoSploit integrate Metasploit and Shodan to

automate exploitation pipelines [9]. Python can also integrate with Nessus or OpenVAS via API for

vulnerability scanning .

This approach automates the EternalBlue (MS17-010) exploit using a reverse shell payload. The

script monitors for a successful session, and if it is open, the scripts can interact with Metasploit’s

power in Python logic. For instance, after the scan, if SMB is discovered on an unpatched Windows

host, the script can autolaunch EternalBlue. If the attack fails, it will move to the next target or

exploit, this saves time when compared to manual module loading. It is fast, efficient, and fully

automated exploitation. Python can integrate with other tools like Immunity Canvas,

Nessus/OpenVAS for vulnerability, Hydra or Medusa for brute forcing credentials.

Volume 11 Issue 3 @ 2025 IJIRCT | ISSN: 2454-5988

IJIRCT2506017 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 6

4. Python Libraries for Exploit Development and Post-Exploitation:

Python is the go-to language for writing exploits, because of its speed and rich libraries. Custom

Python exploits can target specific CVEs in automated pentesting, especially for apps that use

custom protocols, where tools like Scapy help craft malicious packets. Libraries like Impacket are

important for post-exploitation. If access to a Windows shell is gained, Impacket can dump NTLM

hashes, run remote commands, or move laterally using stolen credentials, similar to what red teams

do. Automation frameworks can string all of this together, adapting to the attacks based on the

response of the target.

5. Case Study – IoT/Smart Devices:

Many IoT devices use standard protocols like Bluetooth and Zigbee, thus Python plays a major role

in IoT security testing. Tools like open-source IoTective show how Python can automate pentesting

in smart home environments. A Python-based tool can scan for devices over multiple channels, using

Scapy for Zigbee, PyBluez for Bluetooth, and sockets for Wi-Fi. It will discover devices, check for

common issues, like opening the debug ports or default credentials, and pull all of this into a single

view. Python’s ability to handle multiple protocols and interface with hardware in one script.

6. Cloud and API-driven Pentesting:

In the current environment, most of the infrastructure is cloud-based. For example, when automating

a penetration test of an AWS cloud environment, the tool Pacu is an AWS exploitation framework in

Python, for automating cloud pentesting tasks. Implementation-wise, Pacu uses the official AWS

Python SDK 9boto3 to enumerate cloud services, identify misconfigurations or weak policies, and

then it executes the post-exploitation actions in the cloud context, like escalating privileges by

exploiting over permissive roles. Python automated cloud can automatically check for common

cloud issues, list all S3 buckets and test if they are publicly writable, enumerate all IAM roles to find

privilege escalation paths, etc. These actions are performed by simple Python API calls rather than

external tools. The automation will simulate an inside attacker using stolen cloud credentials, which

is an attempt to pivot within the cloud environment. By automating, one can quickly evaluate the

security posture of an AWS or Azure environment. Pacu simulates adversarial behavior in cloud

infrastructure and is cataloged in MITRE ATT&CK [11][12].

7. Combining Open-Source and Proprietary Tools:

The real-world implementations often are a mix of open-source and commercial tools, and Python is

used to tie everything together. For instance, Burp Suite, which is a popular web presenting tool, can

be controlled using its API through Python (library burp-api-python), which can scan specific

endpoints and fetch results. If a proprietary credential scanner is used, Python can call its API and

pull the leaked credentials to test them. One Python script coordinates different tools and runs a full

simulation of attacks, thus the analyst can trigger everything from one place. Python is used as an

orchestrator for tools like Bup suite and Shodan [9].

Example Frameworks in Python:

● APT2: This framework uses modular Python scripts and trigger-based logics to chain scanning and

exploitation steps [10].

Volume 11 Issue 3 @ 2025 IJIRCT | ISSN: 2454-5988

IJIRCT2506017 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 7

● AutoSploit: In this framework, Shodan and Metasploit RPC are used to launch mass exploits based

on CVEs [9].

● AutoPentest-DRL: This framework applies reinforcement learning to select attack paths on the

basis of the network state. It uses Python ML libraries and OpenAI Gym [13].

Error Handling and Performance:

Error handling is critical while automating unpredictable network operations. Python’s try-except blocks are

used to catch exceptions such as network timeouts, unexpected responses, authentication failures and handle

them. As the automation is not supposed to crash due to the unexpected behavior of one target, it has to log

the error and move on. Most pentest operations are I/O- bound, which makes Python well-suited even

without parallel CPU threading.

LIMITATIONS:

1. Lack of Contextual Understanding

Automated tools based on predefined rules and signatures restrict them from comprehending the context of

complex systems. This hampers their ability to identify business logic vulnerabilities or attack vectors that

deviate from known patterns.

2. Challenges in Simulating Complex Attack Scenarios

Advanced cyber threats that involve multi-step, adaptive attack strategies will exploit a combination of

system weaknesses. Automated penetration testing of tools struggle to replicate sophisticated attack chains,

especially those that require real-time decision making of lateral movement among the networks. This

limitation will reduce the efficacy of emulating scenarios in real world that the attackers can employ.

3. Prevalence of False Positives and Negatives

The dependency on signature-based detection mechanisms of the automated tools can lead to a significant

number of false positives that flag benign behaviors as malicious and the false negatives fail to detect actual

threats. This kind of inaccuracy can result in misallocated resources, as security teams will spend time

investigating non-issues or overlooking genuine vulnerabilities.

4. Inability to Assess Exploit Impact Accurately

Automation of tools can identify potential vulnerabilities, but cannot assess the real-world impact of

exploiting these weaknesses. Understanding the potential consequences of an exploit, like data exfiltration

or systemd downtime, requires contextual analysis that automated systems are not equipped to perform.

5. Limited Adaptability to Dynamic Environments

The modern IT environments are characterized along with constant change, which includes frequent

software updates, configuration changes, and evolving user behavior. Automated pentesting tools may not

adapt swiftly to these changes, which leads to outdated assessments that do not reflect the current security

posture of the system.

Volume 11 Issue 3 @ 2025 IJIRCT | ISSN: 2454-5988

IJIRCT2506017 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 8

MITIGATING LIMITATIONS THROUGH AN INTEGRATED APPROACH

To address the above limitations, a hybrid approach that combines automated tools along with manual

testing methodologies is recommended:

● Incorporation of Human Expertise: Skilled security professionals should be engaged to interpret

automated findings; these professionals can provide the necessary context and accurately assess

based on the significance of the identified vulnerabilities.

● Continuous Monitoring and Updating: The automated tools need to be regularly updated with the

latest threat intelligence, and it should be ensured that they are configured correctly to reflect the

correct system environment.

● Customized Testing Scenarios: Tailored test cases that reflect the specific business logic and

operational workflows have to be designed, which can help discover vulnerabilities that generic

automated tests cannot.

● Integration with Advanced Analytical Tools: Automated penetration testing combined with

advanced analytics and machine learning can improve the detection of complex attack patterns and

reduce false positives.

USE CASES:

Automated penetration testing is being used across multiple industries and use cases, improving security

validation and reducing costs.

● Enterprise IT Networks: Companies are automating internal pentests using tools like APT2 and

Autosploit to validate exposure from known vulnerabilities and reduce manual effort [9][10].

CI/CD Pipelines: Real-time web security testing of every code deployment is enabled using

OWASP ZAP via Python into DevOps pipelines [4].

● IoT Environments: Tools like IoTective allow continuous scanning of smart home or factory

devices for misconfiguration and exposed services.

● Cloud Security: Using Pacu and boto3, Python scripts audit AWS environments regularly to check

for privilege escalations and public data exposure [11][12].

Case 1: Continuous Security Testing in DevOps

A large e-commerce company has embedded automated penetration testing into its CI/CD pipeline using

Python scripts and OWASP ZAP’s API, each deployment to staging triggered automated web vulnerability

testing, detecting OWASP top 10 issues within 30 minutes. These critical findings and detection of failed

builds have enabled the developers to fix the issues early on. This has changed the quarterly manual tests

into continuous testing, reducing production incidents and improving compliance [4].

Case 2: PTaaS for SMBs

A healthcare client has benefited from using Python-based Penetration Testing as a Service (PTaaS)

platform by uncovering chained vulnerabilities, like open SMB shares, weak credentials that can enable

lateral movement. This low-cost model ensured that regular assessments happened and HIPAA compliance,

helped by analyst oversight [6].

Volume 11 Issue 3 @ 2025 IJIRCT | ISSN: 2454-5988

IJIRCT2506017 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 9

Case 3: Enterprise Cost Savings

A healthcare wholesaler, Symbion used a Python-driven solution EvolvePT, to scan their infrastructure, the

results were delivered in two days. This saved 80% of their manual testing costs with zero false positives.

The platform has prioritized high-impact issues along with streamlined remediation [5].

Case 4: Compliance Automation

A PCI-DSS Level 1 service provider used RidgeBot for continuous scanning and automated reporting. The

monthly tests have replaced costly annual assessments and simplified the audits while improving the

security posture. These automated results were used as a part of compliance evidence [6].

Future Directions

In the field of automated penetration testing, the technological landscape is rapidly changing, and as

attackers adopt new tactics, the automated security testing also needs to advance. Python’s versatility and

widespread use in cybersecurity will continue to be the forefront of these developments.

● Integration of Advanced AI and Machine Learning: Projects like PentestGPT and AutoPentest-

DRL [13] show the trend that is moving towards autonomous penetration testing agents that use

LLMs to interpret outputs and RL agents for planning. These tools are capable of making context-

aware decisions and dynamically chaining attacks in real-time.

● DevSecOps Pipeline Automation: Python scripts integrated with GitHub Actions or Jenkins will run

ZAP or custom fuzzers on every build, ensuring that vulnerabilities are caught before production.

This makes security testing an integral part of the CI/CD pipelines.

● BAS and Pentesting Convergence: Penetration testing and breach simulation are going to merge,

tools will exploit the real vulnerabilities while mimicking ransomware or lateral movement

behaviors to test the readiness of the defense. Python will also drive the automated remediation

flows, where the detected issues will trigger Ansible playbooks or JIRA tickets, thus closing the loop

from detection to fixing.

● Fuzzing and Zero-Day Discovery: Intelligent fuzzing integrated along with automated workflows

will uncover unknown vulnerabilities. Cloud-based pentest farms that run parallel fuzzers, are going

to be common.

Real-time collaboration with the control dashboards is going to train red and blue teams along with

validating alerts and detection logic. A Python script will enable the dynamic threat simulation. Future

platforms will enforce audit trials and scope the restrictions for automation and AI, which will ensure the

safety in production environments and legal compliance. The modular plugins will target mobile apps, ICS,

vehicles, and more. The Python library ecosystem will allow the security teams to plug in domain-specific

scanners and exploits.

Conclusion

Automated penetration testing using Python has come to be a transformative approach in cybersecurity,

enabling organizations to perform more frequent, comprehensive, and efficient security assessments. The

simplicity of Python’s rich e cosystem allows rapid scripting of scanning, exploitation, and reporting

workflows. Automation boosts the security coverage by running continuous tests in the CI/CD pipeline,

Volume 11 Issue 3 @ 2025 IJIRCT | ISSN: 2454-5988

IJIRCT2506017 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 10

scaling to thousands of devices, and thus identifying risks much earlier in the lifecycle. The analysis of use

cases from enterprises, IoT deployments, and cloud service providers shows dramatic gains in speed, cost

savings, and risk reduction. Along with AI and reinforcement learning, the future tools become more

adaptive, LLMs can interpret the results, generate payloads, and even reason the next steps.

However, even though the automation brings scalability and efficiency, it won’t replace the nuanced

understanding and context-based approach that an experienced human professional can provide. Complex

attack vectors and business logic flaws often require the discernment that only experienced cybersecurity

professionals can offer. So, taking into consideration all these factors, a hybrid approach that combines the

automated tools with human oversight will ensure a more comprehensive security assessment. As the

cybersecurity landscape continues to evolve, the synergy between automated processes and human

intelligence is going to be essential in maintaining robust defense mechanisms.

References

[1] Picus Security, “The Complete Guide to Understanding Automated Penetration Testing,” Picus

Security Blog, 2025. [Online]. Available: https://www.picussecurity.com/resource/glossary/what-is-

automated-penetration-

testing:contentReference[oaicite:113]{index=113}:contentReference[oaicite:114]{index=114}

[2] J. Selvdige, “Top 5 Benefits Of Automated Penetration Testing,” PurpleSec, Mar. 2024. [Online].

Available: https://purplesec.us/learn/automating-penetration-

testing/:contentReference[oaicite:115]{index=115}:contentReference[oaicite:116]{index=116}

[3] Rootshell Security, “Automated Penetration Testing: Benefits and Limitations,” Rootshell Blog,

2023. [Online]. Available: https://www.rootshellsecurity.net/automated-penetration-testing-benefits-and-

limitations/:contentReference[oaicite:117]{index=117}:contentReference[oaicite:118]{index=118}

[4] A. Compton, “Automated Penetration Testing Toolkit (APT2),” DEF CON 24 Demo Labs, Aug.

2016. [Online]. Available: https://defcon.org/html/defcon-24/dc-24-

demolabs.html:contentReference[oaicite:119]{index=119}

[5] K. Nordnes et al., “IoTective: Automated Penetration Testing for Smart Home Environments,” in

Proc. 9th Int. Conf. Internet of Things, Big Data and Security (IoTBDS), 2024. [Online]. Available:

https://www.scitepress.org/Papers/2024/125545/125545.pdf:contentReference[oaicite:120]{index=120}

[6] G. Deng et al., “PENTESTGPT: Evaluating and Harnessing Large Language Models for

Automated Penetration Testing,” in Proc. 33rd USENIX Security Symposium, 2024. [Online]. Available:

https://www.usenix.org/system/files/usenixsecurity24-

deng.pdf:contentReference[oaicite:121]{index=121}:contentReference[oaicite:122]{index=122}

[7] S. Caldwell, “Deep Exploit: Fully Automatic Penetration Test Tool Using Deep Reinforcement

Learning,” HackMD Article, 2018. [Online]. (Describes linking of Deep RL with Metasploit for automated

exploits.)

[8] KitPloit, “AutoPentest-DRL – Automated Penetration Testing Using Deep Reinforcement

Learning,” May 2021. [Online]. Available: https://www.kitploit.com/2021/05/autopentest-drl-automated-

penetration.html:contentReference[oaicite:123]{index=123}:contentReference[oaicite:124]{index=124}

Volume 11 Issue 3 @ 2025 IJIRCT | ISSN: 2454-5988

IJIRCT2506017 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 11

[9] S. Evans, “Python for Pentesters: 5 Python Libraries Every Pentester Should Be Using,” NopSec

Blog, Dec. 2017. [Online]. Available: https://www.nopsec.com/blog/5-python-libraries-every-pentester-

should-be-using/:contentReference[oaicite:125]{index=125}:contentReference[oaicite:126]{index=126}

[10] A. Kulkarni, “Automated Security Testing Using ZAP Python API,” Ministry of Testing, Nov. 2019.

[Online]. Available: https://www.ministryoftesting.com/articles/automated-security-testing-using-zap-

python-api:contentReference[oaicite:127]{index=127}

[11] Rhino Security Labs, “Pacu: The Open Source AWS Exploitation Framework,” Rhino Labs Blog,

Aug. 2018. [Online]. Available: https://rhinosecuritylabs.com/aws/pacu-open-source-aws-exploitation-

framework/:contentReference[oaicite:128]{index=128}:contentReference[oaicite:129]{index=129}

[12] MITRE ATT&CK, “Pacu – S1091,” MITRE ATT&CK Database, 2023. [Online]. Available:

https://attack.mitre.org/software/S1091/:contentReference[oaicite:130]{index=130}:contentReference[oaicit

e:131]{index=131}

[13] Threat Intelligence, “How Symbion achieved 80% cost savings with zero false positives by using

automated penetration testing,” Case Study, 2023. [Online]. Available:

https://www.threatintelligence.com/automated-penetration-testing-case-study-

evolvept:contentReference[oaicite:132]{index=132}:contentReference[oaicite:133]{index=133}

[14] Hadrian, “Is Automated Penetration Testing the Future?,” Hadrian Blog, Jan. 2025. [Online].

Available: https://hadrian.io/blog/is-automated-penetration-testing-the-

future:contentReference[oaicite:134]{index=134}

[15] S. Shah and B. Mehtre, “An Overview Of Vulnerability Assessment and Penetration Testing

Techniques,” Journal of Computer Virology and Hacking Techniques, vol. 11, no. 1, pp. 27–49, 2015.

(Referenced for foundational definitions of pentesting).

[16] J. Applebaum et al., “Military Academy Attack/Defense Labs – Lessons from Cyber Defense

Exercise,” IEEE Security & Privacy, vol. 15, no. 5, pp. 72–79, 2017. (Reference to red teaming and

pentesting benefits over traditional defense.)

[17] Secure Ideas, “Pros and Cons of Manual vs Automated Penetration Testing,” Secure Ideas Blog,

2024. [Online]. (Discusses coverage differences and false positive rates.)

[18] D. Upadhyay et al., “Automating Post-Exploitation with Deep Reinforcement Learning,”

Computers & Security (Elsevier), vol. 99, 2020. [Online]. (Study showing application of DRL to automate

attacker post-exploit actions.)

[19] R. Chauhan, “LLMs as Hackers: Autonomous Linux Privilege Escalation Attacks,” arXiv preprint

arXiv:2304.14107, 2023. [Online]. (Experiment with GPT-4 generating and executing privilege escalation

steps.)

[20] Gartner, “Market Guide for Adversarial Exposure Management,” Gartner Research, 2025.

(Industry report highlighting automated pentesting tools as part of exposure management strategies.)

