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Abstract 

Crop yield prediction plays a crucial role in agricultural planning, food security, and economic 

stability. Traditional yield estimation methods are often labor-intensive, time-consuming, and limited 

in accuracy. This study focuses on the use of Machine Learning (ML) algorithms integrated with 

satellite data to enhance crop yield prediction. Satellite imagery provides valuable environmental 

indicators such as NDVI, rainfall, temperature, and soil moisture, which influence crop growth. By 

training ML models like Random Forest, Support Vector Machines, and Gradient Boosting on 

historical crop yield and remote sensing data, the system can identify patterns and predict yields 

with improved accuracy. The model’s ability to analyze real-time and large-scale data makes it 

suitable for diverse regions and crop types. This technology empowers farmers, researchers, and 

policymakers with timely insights, aiding in better resource allocation, risk management, and 

strategic planning. The integration of ML and satellite data offers a scalable, efficient, and data-

driven approach to modern agriculture. 
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1. Introduction 

Agriculture continues to be the backbone of many economies around the world, supplying food, jobs, and 

raw materials for industry [1]. In the face of global issues such as climate change, population growth, and 

resource scarcity, increasing agricultural production has become a top priority. Accurate crop production 

forecast is a significant aspect in determining productivity [2]. Crop yield prediction is an estimation of the 

amount of crop that can be gathered from a given region. Traditionally, this estimation has been based on 

manual surveys and agronomic models. These procedures are time-consuming, subject to human error, and 

frequently lack precision [3]. The rise of data-driven technologies such as machine learning and satellite 

remote sensing provides a more robust and scalable solution. Management strategies and factors are used to 

predict outcomes such as crop health and production [4]. 

Machine learning (ML), a subset of artificial intelligence, allows systems to learn patterns from data and 

make predictions without explicit programming. In agriculture, ML models can analyze complex 

interactions among weather conditions, soil parameters, crop management practices, and other variables to 

predict outcomes such as crop health and yield. Satellite data has transformed agricultural monitoring by 

providing consistent, high-resolution, multi-spectral images of the Earth's surface [5]. This data can offer 

insights into crop growth stages, vegetation health (measured by NDVI), water stress, and land cover 

changes, which in turn provide valuable inputs for ML models. The combination of ML algorithms and 
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satellite imagery creates a powerful synergy, enabling researchers and farmers to make timely and informed 

decisions. This integration helps reduce crop losses, optimize resource usage, and enhance food security 

through accurate, data-driven forecasts. The global agricultural sector is undergoing a significant 

transformation, driven by precision farming and digital agriculture. The integration of ML and satellite data 

aligns perfectly with these trends by providing automated, scalable, and precise tools for crop monitoring 

and forecasting [6]. 

 

Although this discipline is promising, it is also confronted with issues like data quality, model 

generalizability, spatial heterogeneity, and access to ground-truth yield data [7]. These can impact the 

precision and trustworthiness of prediction systems. Hybrid methods that incorporate a mixture of ML 

models, ensemble methods, or merge physical crop growth with ML are being investigated [8]. Such 

methods have been found to improve prediction performance while limiting uncertainties [9]. 

 

The addition of Internet of Things (IoT) sensors, including soil sensors, drones, and weather stations, is also 

enriching datasets for yield prediction [10]. The process of data fusion, which combines data from ground-

based equipment with satellite-derived data, is allowing for this. Case studies in nations such as India, the 

United States, Brazil, and sub-Saharan Africa have been demonstrating encouraging outcomes in applying 

ML and satellite imagery to forecast yields of wheat, rice, maize, and soybeans [11]. They are evidence of 

concept for scalability globally.ML-based yield forecasting can assist in crop insurance schemes, helping 

insurers and farmers evaluate risks more effectively and design data-driven insurance products [12]. 

Governments can also use this predictive power for disaster relief planning, subsidy allocation, and rural 

development programs, ensuring resources are directed to areas that need them most [13]. As the agriculture 

sector becomes increasingly digital, the role of cloud computing, big data platforms, and mobile applications 

is becoming critical in deploying these predictive models in real-world farm scenarios [14]. 

 

2. Literature review 

Crop yield prediction is a vital component in agricultural planning and food security [1]. Over the past 

decade, researchers have focused on integrating Machine Learning (ML) and satellite remote sensing to 

accurately forecast crop yields. Traditional statistical models often lack adaptability across regions and time 

[2]. However, ML models—when trained on multisource data including satellite imagery, soil parameters, 

climate variables, and historical yield records—can uncover complex patterns to make highly accurate 

predictions [3]. 

 

Bendre and Thool (2023) introduced an ML approach using Support Vector Machines (SVM) and Decision 

Trees to predict soybean yield. They demonstrated that ML models outperform traditional regression 

models, especially when large datasets are involved  [4].  

 

Patel and Doshi (2023) utilized Random Forest (RF) and XGBoost algorithms on meteorological and soil 

data. Their models showed an R² value of over 0.85, indicating high accuracy in predicting wheat and rice 

yield in India [5]. Lobell et al. (2022) highlighted the value of Normalized Difference Vegetation Index 

(NDVI) from MODIS satellite data to estimate maize yield in Sub-Saharan Africa. NDVI was shown to 

correlate strongly with biomass and final yield [6]. You et al. (2022) developed a deep learning CNN model 

to estimate crop yield using high-resolution satellite imagery [7]. The model captured spatial patterns in 

crop canopy growth and showed better predictive performance than classical ML techniques [8]. Kuwata 

and Shibasaki (2019) proposed a hybrid system combining satellite derived indices with ground weather 

data. Their Random Forest model yielded highly accurate results and was effective in handling non-linear 
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relationships in the data. Khaki and Wang (2021) integrated Recurrent Neural Networks (RNN) with 

temporal NDVI data to capture crop development stages over time [9]. Their approach was especially 

effective in long-term predictions over seasonal data [10]. Khaki and Wang (2019) integrated Recurrent 

Neural Networks (RNN) with temporal NDVI data to capture crop development stages over time. Their 

approach was especially effective in long-term predictions over seasonal data [11]. 

 

3. Methodology 

The first and foundational step in crop yield prediction using machine learning and satellite data is the 

collection of diverse datasets from multiple sources. Ground based data typically includes historical crop 

yields, weather information (temperature, rainfall, humidity), and soil characteristics (nutrient content, pH 

levels, organic carbon). Simultaneously, satellite imagery is used to extract vegetation indices such as NDVI 

(Normalized Difference Vegetation Index), EVI (Enhanced Vegetation Index), and SAVI (Soil-Adjusted 

Vegetation Index). These indices reflect the health and growth of crops over time. Data from remote sensing 

satellites like MODIS, Sentinel-2, and Landsat are frequently used due to their temporal resolution and 

accessibility. 

 

the data is collected, it undergoes several preprocessing steps to make it suitable for modeling. Ground data 

is cleaned by handling missing values, outliers, and standardizing units. Satellite imagery is processed to 

remove clouds, correct atmospheric effects, and align spatial and temporal scales. Time-series aggregation is 

performed to match the crop growth stages (e.g., sowing, vegetative, reproductive, and harvesting phases). 

The goal of preprocessing is to ensure high quality, consistent input data that aligns geographically and 

temporally across all variables.The workflow was designed based on three fundamental principles: 

accuracy, modularity, and reusability. 

 

 
 

Fig.1. Existing methodology 

 

The proposed methodology aims to enhance the accuracy, scalability, and adaptability of crop yield 

prediction by integrating machine learning with high resolution satellite data and environmental parameters. 

Unlike traditional methods that rely solely on historical yield and weather data, this approach leverages real 

time remote sensing and temporal vegetation indices such as NDVI, EVI, and SAVI. The proposed system 

is designed to be modular and adaptable to different geographical areas and crop types, making it a robust 

decision-support tool for precision agriculture and food security planning. 
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Fig. 2 methodology 

 

After training and validation, the proposed system will output high-resolution, district-level yield 

predictions for selected crops. These predictions will be visualized using GIS-based heat maps and 

dashboards for ease of interpretation. The final outcome will support decision-making for stakeholders, 

including farmers (for resource planning), government agencies (for food distribution), and agri-businesses 

(for supply chain optimization). The model will also incorporate a feedback loop, where prediction errors 

are used to fine-tune and improve model performance over time. 

 

 
Fig. 3. Dataset OverviewCrop types 

 

In addition to ground data, satellite imagery plays a crucial role in capturing real time crop conditions. 

Vegetation indices like NDVI (Normalized Difference Vegetation Index), EVI (Enhanced Vegetation 

Index), and SAVI (Soil-Adjusted Vegetation Index) are extracted from satellite sources such as MODIS, 

Sentinel-2, or Landsat-8. These indices reflect plant health, chlorophyll content, and biomass, serving as 

powerful features in predictive modeling. Soil data—pH, nitrogen, phosphorus, and potassium levels—is 

also considered to understand the fertility and water retention capacity of agricultural land. The selected 

datasets are then temporally and spatially aligned to ensure they accurately represent the crop's growing 

period and region. 

 

Once the relevant data sources are identified, they are filtered based on completeness, accuracy, and 

resolution. Only those data points that correspond to the specific crop cycle and geographic region of 

interest are selected. This ensures that the model is trained on high-quality, context-specific data, improving 

its prediction accuracy and reliability. The selection process also takes into account the temporal coverage 

(number of years), resolution (spatial and temporal granularity), and accessibility of the data to ensure 

scalability and repeatability of the approach across multiple seasons and crop types. 

 



Volume 11 Issue 3                                                          @ 2025 IJIRCT | ISSN: 2454-5988 

 

IJIRCT2506013 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 5 
 

 
 

Fig. 4. Nitrogen Frequency 

 

Average weather conditions include a temperature of 26.19 °C, humidity of 61.32%, pH of 6.00, and 

precipitation of 99.13 mm. Significant variation is seen by the standard deviations, with humidity coming in 

at 22.38% and potassium (K) at 51.27. The lowest temperature recorded was 8.83°C, the humidity was 

14.26%, the pH was 3.50, and the rainfall was 20.21 mm. The minimum values for nitrogen (N), phosphorus 

(P), and potassium (K) are 0, 5, and 5, respectively. Nutrients (N), phosphates (P), and potassiums (K) had 

25th percentile values of 21, 27, and 20, respectively, with 23.39 °C for temperature, 58.51% for humidity, 

5.99 for pH, and 61.43 mm for rainfall. The median (50th percentile) values for the following variables are 

displayed: temperature (26.34°C), humidity (80.54%), pH (6.46), precipitation (94.63 mm), and nitrogen 

(N) at 37, phosphorus (P) at 50, and potassium (K) at 32. In the 75th percentile, the following values are 

recorded: 85 for nitrogen, 67 for phosphorus, and 48 for potassium. The weather conditions include a high 

of 29.11°C, a humidity of 90.17 percent, a pH of , and 116.73 mm of rainfall. At its height, the weather 

recorded a temperature of 43.68°C, humidity of 99.98%, pH of 9.94, and rainfall of 293.56 mm, with 

maximum values of 140 for nitrogen (N), 145 for phosphorus (P), and 205 for potassium (K). 

The collection provides detailed information about which environmental elements are most suited for crop 

development, highlighting the need of coffee, and papaya, since the overall mean nitrogen content of 44.08 

is insufficient for these crops. However, it is adequate for Mungbean and grapes. Such papaya and 

Mungbean, crops with greater phosphorus demands, such grapes, need careful adjustment to the mean 

phosphorus level of 38.44. While bananas and papayas benefit greatly from an average potassium level of 

38.29, crops that need a lot of potassium, such as grapes, require much higher levels of potassium, 

highlighting the necessity for increased potassium treatment in these instances. An important consideration 

is temperature control; although 26.19°C is ideal for bananas, coffee, and mung beans, it necessitates 

changes for maize, grapes, and especially papaya, a fruit that does well in warmer climates. While crops like 

bananas, mung beans, and grapes thrive with an average humidity of 71.32%, crops like maize, coffee, and 

papaya may need adjustments to achieve optimal growing conditions. Because it reflects a mild acidity to 

neutrality that helps a wide variety of plants, the pH level of 6.47 is generally favorable to most crops in the 

dataset. Finally, water-demanding crops. 
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Various crops have various nutritional and environmental requirements, and this research shows that these 

requirements vary significantly. For example, both papaya and bananas grow well in hot, humid climates 

and have comparable nitrogen, phosphorus, and potassium needs. Mild climates are best for maize and 

mungbean since these crops have lower fertilizer requirements. While mungbean and grapes are nitrogen 

and humidity compatible, their potassium requirements are quite different. Grapes need much more 

potassium. Another notable quality of grapes is their high temperature tolerance. In contrast, papaya and 

coffee have quite different water and phosphorus requirements, whereas coffee requires far less water and 

phosphorus than papaya. Finally, mungbean and banana are similar, but banana needs more nutrients and 

more humidity, thus it's important to handle these factors for each crop individually. 

 

4. Result & Discussions 

Logistic Regression is a widely used statistical model traditionally applied to binary classification problems. 

In agriculture, while crop yield prediction is usually a regression task (predicting a continuous value like 

yield per hectare), Logistic Regression can be employed for classification-based optimization problems. For 

example, it can classify whether a yield is likely to be high or low based on environmental conditions, or 

determine whether certain soil and weather conditions are suitable for optimal crop growth. This makes 

logistic regression a valuable tool in decision-support systems, particularly in low-resource or real time 

applications due to its simplicity and interpretability. 

 

 
Fig. 5. Confusion matrix of Logistic Regression 

The Decision Tree model, which was made with an unconstrained "max_depth" parameter, does a great job 

of classifying different crops, getting an accuracy of 0.8639. The fact that the model is able to capture and 

accurately depict the intricate relationships that are inherent in the agricultural dataset is suggested by the 

high level of accuracy it possesses. The confusion matrix shows in more depth which predictions the model 

got right and wrong for different crops, so its performance can be judged more accurately. When you look 

more closely at the classification report, you can see that the model does really well with some crops, like 

apple and chickpea, where the accuracy, recall, and F1-scores are all perfect. But for crops like, the metrics 

are a little lower, which means that the model's forecasts could use some work. Even with these differences, 

the Decision Tree model gets a good macro average precision score of 0.87 and a weighted average 

precision score of 0.87, showing that it can handle class mismatches well. Its macro and weighted average 

recall scores are both 0.86, which shows that it does well with recall in all classes. The model's F1-scores, 

which have a macro average of 0.87 and a weighted average of 0.86, also show how well it balances 

accuracy and recall, which makes it a useful tool for agricultural optimization. 

 

 



Volume 11 Issue 3                                                          @ 2025 IJIRCT | ISSN: 2454-5988 

 

IJIRCT2506013 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 7 
 

5. Conclusion 

The application of various machine learning algorithms, including Logistic Regression, Decision Tree, 

Random Forest, and Support Vector Machine (SVM), yielded impressive accuracy rates, ranging from 85% 

to 91%. These results underscore the effectiveness of these models in predicting the optimal crop based on 

input features such as soil quality, climate conditions, and other agricultural factors. Among the models, 

Random Forest stood out with the highest accuracy of 91%, making it the most reliable for this application. 

SVM followed closely with an accuracy of 89%, demonstrating its ability to balance bias and variance well. 

Logistic Regression and Decision Tree also performed commendably, with accuracy rates of 88% and 86% 

respectively. The integration of machine learning techniques with satellite data in crop yield prediction 

marks a significant advancement in precision agriculture and sustainable farming practices. This study has 

demonstrated that using diverse data sources—such as NDVI, EVI, weather records, and soil parameters—

combined with robust ML algorithms like Support Vector Machine (SVM), Logistic Regression, and others, 

can significantly enhance the accuracy and reliability of crop yield predictions. These technologies not only 

reduce the dependency on manual surveys and historical trends but also enable real-time and region-specific 

forecasting, which is crucial for timely agricultural interventions. 
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