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Abstract 

ETCD is a distributed key-value store designed to manage critical configuration data, service 

discovery, and coordination information in distributed systems, offering high availability, fault 

tolerance, and strong consistency through the Raft consensus protocol. This protocol ensures that all 

nodes in the cluster maintain the same data view, even in the presence of network failures or node 

crashes. In etcd, read operations can be categorized into linearizable and serializable reads. 

Linearizable reads provide the highest level of consistency, ensuring that the client retrieves the most 

recent data that has been acknowledged by the Raft leader node, which is crucial for tasks like leader 

election, distributed locking, and configuration management. However, linearizable reads tend to 

introduce higher latency due to the additional communication and synchronization required. On the 

other hand, serializable reads offer a faster alternative with lower latency, as they do not require 

synchronization with the leader node. These reads ensure consistency within a certain scope but may 

return slightly stale data, making them suitable for use cases where absolute real-time consistency is 

not necessary. The flexibility of choosing between linearizable and serializable reads allows etcd to 

cater to different application needs, balancing consistency and performance depending on the specific 

requirements of the system. Linearizable reads guarantee strong consistency but may incur higher 

latency, while serializable reads provide a more efficient solution with a weaker consistency model. 

This adaptability makes etcd a reliable and scalable choice for managing configuration data and 

coordinating distributed systems in various cloud-native environments. This flexibility in read 

operations ensures that distributed systems can make trade-offs between performance and 

consistency based on the specific needs of their use cases. In scenarios where real-time consistency is 

paramount, linearizable reads are the ideal choice, as they guarantee the most up-to-date data. 

However, in situations where performance is prioritized and some level of staleness is acceptable, 

serializable reads offer a more efficient solution. The combination of both read models enables etcd to 

serve a wide range of applications, from real-time coordination tasks to high-performance 

configurations. By offering both consistency and performance options, etcd meets the demands of 

modern distributed systems. Linearizable read operations are having performance issues. This paper 

addresses this issue using serializable read operations.  
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INTRODUCTION 

etcd is an open-source, reliable storage system designed to coordinate and manage dynamic environments 

within distributed architectures [1]. It plays a vital role in systems where maintaining state and ensuring 

correctness of operations are critical. By acting as a central source of truth, it helps applications make 
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consistent decisions across geographically or logically separated components. Built for durability, 

scalability, and ease of integration, it ensures that applications relying on it can safely share and modify 

data, even in complex topologies [2]. They are not merely about retrieving values but about understanding 

the accuracy and timing of the returned data. Some reads may return the most recently committed data, 

while others might deliver information that’s valid but potentially outdated. These interactions influence 

how services respond to changes or synchronize with peers. Therefore, understanding the characteristics of 

read approaches helps developers optimize system performance and correctness. Linearization [3] is a 

model that guarantees that every operation appears to take place in a single, global order. This property 

ensures that once a write is confirmed, any subsequent operation will reflect that write if it accesses the 

same data. It’s a powerful concept for ensuring predictability and coherence [4] in concurrent environments. 

In systems supporting this model, users benefit from strong operation visibility, meaning that any change is 

immediately seen by all clients. This is essential when coordinating time-sensitive tasks or ensuring strict 

ordering of events. However, achieving such consistency may introduce communication overhead, 

especially in larger clusters or under high load. Each operation may require confirmation that the global 

view has been updated before proceeding, which may affect throughput [5]. While linearization supports 

accuracy and reliability, it often competes with the need for responsiveness. Balancing these concerns is 

central to distributed systems design. Developers must weigh whether each scenario demands immediate 

correctness or if some delay can be tolerated. Choosing when to apply strict ordering and when to relax it 

determines the system’s overall efficiency and resilience. Understanding these trade-offs is crucial in 

building robust applications using coordination platforms like etcd. 

 

LITERATURE REVIEW 

etcd is a dependable and consistent key-value store purpose-built for distributed systems where coordination 

and configuration integrity are essential. Originally developed by CoreOS and now a key component in the 

CNCF [6] landscape, etcd is widely adopted in cloud-native ecosystems like Kubernetes, where it functions 

as the central store for cluster state, configurations, and service metadata. Its design emphasizes strong 

consistency, resilience, and simplicity, enabling it to maintain a reliable state even in the presence of 

network partitions or node failures. At the core of etcd’s reliability lies its use of the Raft consensus 

algorithm [7], a protocol designed to achieve distributed agreement by electing a leader and replicating logs 

across follower nodes. The strict log replication and leader-driven architecture enable etcd to offer 

predictable behavior and high data integrity across cluster members. 

 Every operation, whether a read or write, must conform to the order imposed by the Raft log, ensuring that 

the system remains consistent regardless of concurrent operations or failures. etcd is particularly well-suited 

for scenarios such as service discovery [8], dynamic configuration updates, distributed locking, and 

coordination of critical infrastructure components where accurate and up-to-date state information is 

paramount. In such environments, even minor inconsistencies can cause cascading failures [9], making a 

strongly consistent system like etcd not just helpful but necessary. One of the critical functionalities of etcd 

is its support for precise and reliable read operations.  

Reads are not merely data fetches [10],  they are assertions about the correctness and visibility of data at any 

given time. In systems where decisions depend on current configurations or the most recent state of 

distributed applications, reads must offer strong guarantees. This is where linearized read semantics come 

into play. Linearization [11], also known as atomic consistency, ensures that once a write is completed, any 

subsequent read will observe that write or a more recent one. In the context of etcd, linearized reads are 

served directly by the current Raft leader [12], which maintains the authoritative log of all committed 

operations. By consulting the leader, etcd can guarantee that the data returned in the read reflects the most 
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recent committed state across the cluster.  

This behavior is essential in distributed coordination patterns [13], such as leader election, where outdated 

data could result in multiple components falsely assuming leadership, or in configuration updates, where 

lagging information could lead to misconfigured services reacting to obsolete settings.   Achieving 

linearization in a distributed system is non-trivial. It often involves synchronizing [14] state across multiple 

replicas, ensuring that no stale reads are served from followers unless explicitly allowed. In the case of etcd, 

the leader confirms that all committed entries are persisted before responding to a read. This mechanism 

avoids "split-brain" scenarios and ensures that clients interacting with the system can trust the data’s 

freshness and authority. However, the guarantees of linearized reads come at a performance cost. Since only 

the leader can serve these reads and must sometimes wait for internal confirmations before replying, latency 

may increase under high load  [15] or when the system is geographically distributed. Still, this trade-off is 

often acceptable, especially when correctness is a higher priority than speed. For example, distributed locks 

implemented using etcd must rely on linearizable reads to confirm ownership and avoid race conditions. If a 

component issues a lock request and receives acknowledgment, any following read must confirm that no 

other entity has obtained the lock since.  

Otherwise, mutual exclusion would break, compromising the integrity of the distributed system. Moreover, 

in applications that depend on change propagation, such as dynamic load balancers or certificate renewals 

[16], linearizable reads ensure that each node in the system reacts based on the most current state. This 

prevents inconsistencies where some components operate using outdated configurations while others move 

ahead with newer data [17]. The uniformity enforced by linearized reads supports a wide range of real-world 

use cases, from distributed monitoring to autoscaling policies, where every millisecond of decision-making 

is tied to precise, recent input data. The strong ordering semantics also simplify application logic; 

developers can reason about their system as if operations occur in a single-threaded sequence [18], even 

though they run across distributed processes.  

Another important aspect is the role of linearized reads in observing cluster health and operational 

reliability. Since these reads go through the leader, failure to receive a timely response can indicate leader 

unavailability or network [19] issues, prompting failover mechanisms or alerts. This behavior helps build 

self-healing systems, where health checks and watchdog services rely on the guarantees of linearization to 

detect and act on anomalies in real time. Furthermore, systems using etcd can leverage linear reads to 

implement versioning, checkpointing, and other mechanisms where operations must be ordered and 

traceable. Despite their overhead, linearized reads are indispensable in critical paths of infrastructure. 

Developers can architect their systems to use linearization selectively—reserving it for reads where 

correctness cannot be compromised, such as configuration fetches during startup, lock acquisition, or 

verifying important state transitions.  

For less critical operations, caching or batched access patterns can offset the performance cost, ensuring that 

the system remains both efficient and correct. This strategic use of linearized reads demonstrates that etcd 

not only supports strong consistency but does so in a way that’s adaptable to different layers of a distributed 

application’s workflow. Ultimately, etcd’s implementation of linearizable reads, backed by Raft and a 

careful handling of leader state, enables developers to build dependable systems where consistency is not 

just a theoretical guarantee but a practical reality. From orchestrators and schedulers to key infrastructure 

services [20], the dependability of read operations defines the robustness of the system as a whole. With 

linearization at the core, etcd provides a strong foundation for applications that must operate with trust in the 

accuracy and freshness of their data, ensuring that every decision made is based on an authoritative, up-to-

date view of the world. Additionally, the observability [21] of linearized reads allows system operators to 
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diagnose the health of the cluster with more clarity. 

For instance, slow responses to these reads might signal latency in the Raft log application or issues with the 

leader node itself. Such insights are invaluable when operating at scale, where silent failures can lead to 

cascading problems if not detected early. Integrating linearized reads into health checks ensures not only 

that the service is responsive but that it is also consistent and up to date. This contributes to better 

monitoring and alerting systems. Furthermore, linearization plays a vital role in state reconciliation 

processes, where components periodically verify that their local view matches the global consensus. This is 

especially important in systems like Kubernetes, where components continuously reconcile desired and 

actual states. By leveraging linear reads, controllers and operators can make precise corrections without the 

risk of acting on stale data.  

Overall, linearization within etcd strengthens the foundation for building highly responsive, accurate, and 

self-healing distributed systems, where correctness is a priority even under load or failure conditions.  

package main 

import ( 

 "context" 

 "fmt" 

 "time" 

 "go.etcd.io/etcd/client/v3" 

) 

func main() { 

 cli, _ := clientv3.New(clientv3.Config{ 

  Endpoints:   []string{"localhost:2379"}, 

  DialTimeout: 5 * time.Second, 

 }) 

 defer cli.Close() 

 ctx1, cancel1 := context.WithTimeout(context.Background(), 2*time.Second) 

 defer cancel1() 

 linearResp, _ := cli.Get(ctx1, "my-key") 

 fmt.Println("Linearizable Read:") 

 for _, kv := range linearResp.Kvs { 

  fmt.Printf("%s : %s\n", kv.Key, kv.Value) 

 } 

 ctx2, cancel2 := context.WithTimeout(context.Background(), 2*time.Second) 

 defer cancel2() 

 serialResp, _ := cli.Get(ctx2, "my-key", clientv3.WithSerializable()) 
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 fmt.Println("Serializable Read:") 

 for _, kv := range serialResp.Kvs { 

  fmt.Printf("%s : %s\n", kv.Key, kv.Value) 

 } 

} 

 

The provided Go code demonstrates how to perform both linearizable and serializable reads from an etcd 

cluster using the etcd client library. etcd is a distributed key-value store that supports different consistency 

models for read operations, depending on application needs. The code first initializes a connection to the 

etcd server at `localhost:2379` with a dial timeout of five seconds. Once connected, it performs a 

linearizable read using the default behavior of the `Get` function, which retrieves the most up-to-date value 

for a specified key from the leader node, ensuring strong consistency. The result is printed with the label 

"Linearizable Read." Then, the code creates a new context and performs a second read operation using the 

`WithSerializable()` option, which instructs the etcd client to perform a serializable read. This allows the 

value to be fetched from any node in the cluster, possibly returning a slightly stale result but with improved 

performance.  

 

The output of this read is labeled "Serializable Read." Both responses are looped through, and the key-value 

pairs are printed to the console. The code illustrates the trade-off between consistency and performance: 

linearizable reads ensure the latest data is returned but can be slower due to coordination with the leader, 

while serializable reads are faster but may reflect older data. Developers can choose the appropriate read 

method depending on their use case—whether accuracy or speed is more critical. This example is helpful for 

understanding how etcd handles consistency in read operations and how it can be integrated into distributed 

applications that require either strong guarantees or faster responses. The code also reinforces the 

importance of context timeouts in Go for managing remote calls, ensuring that operations do not hang 

indefinitely. This dual-read approach shows how etcd enables flexible data access patterns, supporting the 

development of robust, efficient, and consistent distributed systems. 

 

package main 

 

import ( 

 "context" 

 "fmt" 

 "go.etcd.io/etcd/client/v3" 

 "log" 

 "time" 

) 

 

func main() { 

 cli, err := clientv3.New(clientv3.Config{ 

  Endpoints:   []string{"localhost:2379"}, 

  DialTimeout: 5 * time.Second, 

 }) 

 if err != nil { 
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  log.Fatal(err) 

 } 

 defer cli.Close() 

 

 startTime := time.Now() 

 numReads := 1000 

 

 for i := 0; i < numReads; i++ { 

  ctx, cancel := context.WithTimeout(context.Background(), 2*time.Second) 

  defer cancel() 

 

  _, err := cli.Get(ctx, "my-key") 

  if err != nil { 

   log.Println("Error during read operation:", err) 

   continue 

  } 

 } 

 

 elapsedTime := time.Since(startTime) 

 qps := float64(numReads) / elapsedTime.Seconds() 

 

 fmt.Printf("Total Reads: %d\n", numReads) 

 fmt.Printf("Elapsed Time: %s\n", elapsedTime) 

 fmt.Printf("QPS (Queries Per Second): %.2f\n", qps) 

} 

 

The program imports necessary packages (`context`, `fmt`, `time`, and `go.etcd.io/etcd/client/v3`), creates 

an etcd client connected to `localhost:2379` with a 5-second connection timeout, and ensures the client is 

closed at the end. It records the start time (`startTime := time.Now()`) to measure the operation duration, 

sets `numReads` to 1000 for the number of read operations, and uses a `for` loop to perform these reads. 

Each read operation uses a context with a 2-second timeout (`context.WithTimeout()`), performs a read on 

the key `"my-key"` via `cli.Get(ctx, "my-key")`, and logs any errors. Once all reads are completed, the 

program calculates the elapsed time (`time.Since(startTime)`) and computes the QPS (queries per second) 

by dividing the total reads by the elapsed time in seconds. It prints the total reads, elapsed time, and QPS 

value to the console, indicating how many successful read operations were completed per second. This 

approach allows testing of the efficiency of etcd under different loads and is helpful for benchmarking read-

heavy workloads in distributed systems, ensuring that operations don't block indefinitely by using context 

timeouts. The calculated QPS can be used to assess etcd performance under varying loads, and the program 

can be adjusted to perform more complex performance analysis, such as including write or watch 

operations. 
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Cluster Size 

(Nodes) 
Linearizable Read QPS 

3 1100 

5 950 

7 850 

9 750 

11 650 

 

Table 1: Linearizable Read - 1 

 

Table 1  shows that as the cluster size increases from 3 to 11 nodes, the performance of linearizable read 

operations decreases. In a 3-node cluster, the system can handle 1100 queries per second (QPS), reflecting 

the higher throughput at smaller scales. When the cluster size increases to 5 nodes, the QPS drops to 950, 

indicating a slight decrease in performance. As the cluster size reaches 7 nodes, the QPS further declines to 

850, showing the added overhead required for maintaining consistency across more nodes. At 9 nodes, the 

QPS drops to 750, and with 11 nodes, the performance decreases to 650 QPS. This pattern demonstrates the 

trade-off between fault tolerance and read performance, where larger clusters offer higher fault tolerance but 

incur more coordination overhead, affecting the responsiveness of linearizable reads. Consequently, while 

larger clusters are more resilient, they may not be as efficient for read-heavy workloads. 

 

 
 

Graph 1: Linearizable Read -1 

 

Graph 1 shows that as the cluster size increases from 3 to 11 nodes, the performance of linearizable read 

operations declines. At 3 nodes, the system handles 1100 queries per second (QPS), but as the cluster 

expands, the QPS progressively drops. For 5 nodes, it decreases to 950 QPS, and for 7 nodes, it further falls 

to 850 QPS. At 9 nodes, the QPS is 750, and at 11 nodes, it reaches 650 QPS. This trend highlights the 

trade-off between fault tolerance and read performance as the cluster grows. 
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Cluster Size 

(Nodes) 
Linearizable Read QPS 

3 1200 

5 1050 

7 900 

9 800 

11 700 

 

Table 2: Linearizable Read -2 

 

Table 2 shows that as the cluster size increases from 3 to 11 nodes, the performance of linearizable read 

operations decreases. In a 3-node cluster, the system can handle 1200 queries per second (QPS), reflecting 

high performance at smaller scales. When the cluster size increases to 5 nodes, the QPS drops to 1050, 

indicating a slight performance decline. As the cluster size reaches 7 nodes, the QPS further declines to 900, 

showing the added overhead required to maintain consistency across more nodes. At 9 nodes, the QPS drops 

to 800, and with 11 nodes, the performance decreases to 700 QPS. This trend illustrates the trade-off 

between fault tolerance and performance, where larger clusters provide more resilience but incur higher 

coordination overhead, affecting the responsiveness of linearizable reads. Therefore, while larger clusters 

ensure greater fault tolerance, they may not be as efficient for read-heavy applications that require fast 

response times. 

 

 
 

Graph 2: Linearizable Read -2 

 

Graph 2 shows that as the cluster size increases from 3 to 11 nodes, the performance of linearizable read 

operations decreases. At 3 nodes, the system handles 1200 queries per second (QPS), but the QPS gradually 

drops as the cluster size grows. For 5 nodes, the QPS is 1050, and at 7 nodes, it further decreases to 900. At 

9 nodes, the QPS is 800, and with 11 nodes, it reaches 700 QPS. This trend emphasizes the trade-off 

between fault tolerance and read performance.  
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7 950 

9 850 

11 750 

 

Table 3: Linearizable Read -3 

Table 3 shows that as the cluster size increases from 3 to 11 nodes, the performance of linearizable read 

operations decreases. In a 3-node cluster, the system can handle 1300 queries per second (QPS), providing 

high throughput. With 5 nodes, the QPS drops to 1100, showing a slight decrease in performance. As the 

cluster size increases to 7 nodes, the QPS decreases further to 950, indicating that the overhead of 

maintaining consistency across more nodes starts to impact performance. At 9 nodes, the QPS drops to 850, 

and with 11 nodes, it further declines to 750 QPS. This trend reflects the trade-off between fault tolerance 

and performance. Larger clusters provide higher fault tolerance but incur more coordination overhead, 

which negatively impacts read performance. Therefore, while larger clusters are more resilient, they may not 

be as efficient for workloads that require high read throughput. 

 

 
 

Graph 3: Linearizable Read -3 

Graph 3 shows that as the cluster size increases from 3 to 11 nodes, the performance of linearizable read 

operations decreases. At 3 nodes, the system handles 1300 queries per second (QPS), but as the cluster size 

grows, the QPS gradually drops. For 5 nodes, the QPS is 1100, and at 7 nodes, it further decreases to 950. 

At 9 nodes, the QPS drops to 850, and with 11 nodes, the QPS reaches 750. This pattern highlights the 

trade-off between fault tolerance and read performance. 

 

PROPOSAL METHOD 

Problem Statement 

The problem with linearizable reads in a distributed system, such as etcd, lies in its performance limitations 

as the cluster size increases. As the number of nodes grows, the coordination overhead required to maintain 

strong consistency across all nodes increases, leading to a significant drop in query performance. In a cluster 

with only 3 nodes, linearizable reads can handle up to 1300 queries per second (QPS), but as the cluster size 

increases to 5 nodes, performance drops to 1100 QPS. With 7 nodes, the QPS further declines to 950, and it 

continues to decrease as the cluster grows larger. At 9 nodes, the QPS reaches 850, and at 11 nodes, it drops 

to 750 QPS. This decreasing trend in performance indicates that linearizable reads struggle to scale 

effectively in large clusters. As a result, while linearizable reads provide the highest level of consistency, 

they come with a notable performance penalty, making them less suitable for read-heavy applications that 

require fast responses. This issue becomes more pronounced as fault tolerance and cluster size increase, 
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leading to potential bottlenecks. Thus, it is crucial to evaluate the trade-off between consistency and 

performance when designing distributed systems using linearizable reads. 

 

Proposal 

The proposal suggests using serializable reads instead of linearizable reads to address the performance 

issues in large etcd clusters. Serializable reads offer a more efficient way to access data, as they do not 

require strict coordination between all nodes, thus reducing the overhead. While linearizable reads ensure 

the most up-to-date value, serializable reads allow for slightly stale data, but with significantly higher 

performance. This can improve query throughput in larger clusters, where linearizable reads tend to slow 

down as the number of nodes increases. By adopting serializable reads, distributed systems can maintain 

good consistency while achieving better scalability. The trade-off between consistency and performance can 

be optimized based on application requirements. This approach would be particularly useful in read-heavy 

applications that do not require real-time consistency but still need reliable data. Evaluating the specific use 

case is essential for determining the balance between consistency levels and read speed. Shifting to 

serializable reads can alleviate bottlenecks in large-scale deployments and improve overall system 

responsiveness. 

 

IMPLEMENTATION 

 

The cluster has been configured with different node configurations, starting with 3 nodes, and expanding to 

5, 7, 9, and 11 nodes individually. Each configuration represents a different scale of distributed computing, 

with the number of nodes impacting the cluster's fault tolerance, performance, and scalability. As the 

number of nodes increases, the cluster's ability to handle larger workloads and provide high availability 

improves. However, with more nodes, the complexity of managing the cluster and ensuring consistency also 

grows. A 3-node configuration offers basic fault tolerance, while an 11-node configuration provides higher 

resilience and greater capacity for parallel processing. The trade-off between scalability and management 

overhead becomes more evident as the number of nodes increases. Different node configurations can be 

tested to assess the performance and reliability of the cluster under varying workloads. These configurations 

help in understanding how the system performs as resources are scaled up. Evaluating different cluster sizes 

is essential for determining the optimal configuration for specific use cases. 

 

package main 

 

import ( 

 "context" 

 "fmt" 

 "go.etcd.io/etcd/client/v3" 

 "log" 

 "time" 

) 

 

func main() { 

 cli, err := clientv3.New(clientv3.Config{ 

  Endpoints:   []string{"localhost:2379"}, 

  DialTimeout: 5 * time.Second, 
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 }) 

 if err != nil { 

  log.Fatal(err) 

 } 

 defer cli.Close() 

 

 startTime := time.Now() 

 numReads := 1000 

 

 for i := 0; i < numReads; i++ { 

  ctx, cancel := context.WithTimeout(context.Background(), 2*time.Second) 

  defer cancel() 

 

  _, err := cli.Get(ctx, "my-key", clientv3.WithSerializable()) 

  if err != nil { 

   log.Println("Error during read operation:", err) 

   continue 

  } 

 } 

 

 elapsedTime := time.Since(startTime) 

 qps := float64(numReads) / elapsedTime.Seconds() 

 

 fmt.Printf("Total Reads: %d\n", numReads) 

 fmt.Printf("Elapsed Time: %s\n", elapsedTime) 

 fmt.Printf("QPS (Queries Per Second): %.2f\n", qps) 

} 

 

 

The program establishes a connection to an etcd cluster using the `clientv3.New()` method with a 5-second 

timeout and ensures the client is closed afterward. It measures performance by performing 1000 serializable 

read operations, using a 2-second timeout for each operation to avoid blocking. The `cli.Get(ctx, "my-key", 

clientv3.WithSerializable())` method is used to fetch the data while ensuring serializable consistency, which 

offers a balance between consistency and performance compared to linearizable reads. After completing the 

operations, the program calculates the elapsed time and computes the queries per second (QPS) by dividing 

the total number of reads by the elapsed time in seconds. The program outputs the total reads, elapsed time, 

and QPS, providing insights into the system's throughput. This approach allows benchmarking the 

efficiency of serializable read operations in etcd, helping identify performance bottlenecks and assess 

system responsiveness for read-heavy workloads. It can be adjusted to test different configurations, such as 

varying the number of nodes or the timeout values, to understand how these factors impact performance. 

 

package main 

 

import ( 

 "context" 

 "fmt" 
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 "go.etcd.io/etcd/client/v3" 

 "log" 

 "time" 

) 

 

func main() { 

 cli, err := clientv3.New(clientv3.Config{ 

  Endpoints:   []string{"localhost:2379"}, 

  DialTimeout: 5 * time.Second, 

 }) 

 if err != nil { 

  log.Fatal(err) 

 } 

 defer cli.Close() 

 

 startTime := time.Now() 

 numReads := 1000 

 

 for i := 0; i < numReads; i++ { 

  ctx, cancel := context.WithTimeout(context.Background(), 2*time.Second) 

  defer cancel() 

 

  _, err := cli.Get(ctx, "my-key", clientv3.WithSerializable()) 

  if err != nil { 

   log.Println("Error during read operation:", err) 

   continue 

  } 

 } 

 

 elapsedTime := time.Since(startTime) 

 qps := float64(numReads) / elapsedTime.Seconds() 

 

 fmt.Printf("Total Reads: %d\n", numReads) 

 fmt.Printf("Elapsed Time: %s\n", elapsedTime) 

 fmt.Printf("QPS (Queries Per Second): %.2f\n", qps) 

} 

 

The program starts by importing the necessary packages: `context`, `fmt`, `time`, and 

`go.etcd.io/etcd/client/v3`, then creates a client to connect to an etcd cluster at `localhost:2379` with a 5-

second dial timeout. It performs 1000 read operations on a key named `"my-key"` with serializable 

consistency by invoking `cli.Get(ctx, "my-key", clientv3.WithSerializable())`. The `context.WithTimeout()` 

method ensures that each read operation has a maximum execution time of 2 seconds, preventing long 

delays in case of issues. The program tracks the start time and uses it to calculate the elapsed time after 

completing all 1000 read operations. Once the operations are complete, it computes the queries per second 

(QPS) by dividing the total number of reads by the time taken in seconds. The output includes the total 

number of reads performed, the time taken, and the calculated QPS, offering an insight into the system’s 
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throughput under the given conditions. This allows the user to evaluate the efficiency of serializable reads in 

an etcd cluster. The program’s simplicity makes it useful for benchmarking and performance analysis in 

real-world deployments. By adjusting the number of reads or timeout durations, one can assess the impact of 

different factors on the system's performance. The QPS value obtained can be used to understand how well 

the system handles read-heavy workloads, providing valuable data to optimize distributed systems. It helps 

identify potential performance bottlenecks and provides clear metrics for comparison between different 

consistency models or cluster configurations. The program can be extended to analyze various scenarios, 

such as testing with different cluster sizes or adjusting the consistency levels, to fine-tune performance and 

scalability. 

 

Cluster Size (Nodes) Serializable Read QPS 

3 1250 

5 1200 

7 1100 

9 1000 

11 900 

 

Table 4: Serializable Read - 1 

 

As per Table 4 if the  size increases from 3 to 11 nodes, Serializable Read QPS steadily decreases. At 3 

nodes, the performance is the highest, with a QPS of 1250. As the cluster grows to 5 nodes, the QPS drops 

slightly to 1200, indicating a minimal reduction in throughput. With 7 nodes, the QPS decreases further to 

1100, showing a more noticeable performance decline. At 9 nodes, the QPS falls to 1000, and by 11 nodes, 

it reaches 900. This consistent decrease in performance is due to the increased overhead of managing more 

nodes and maintaining distributed consistency across the cluster. Despite the drop, Serializable reads still 

provide higher throughput compared to other types of reads, making them a strong option for large-scale 

applications. The trend suggests that although performance diminishes with the increasing cluster size, 

Serializable reads remain relatively efficient and dependable, making them a viable choice for larger clusters 

where consistency and reliability are important. 

 

 
 

Graph 4: Serializable Read - 1 

 

Graph 4  illustrates that if the cluster size increases from 3 to 11 nodes, Serializable Read QPS steadily 

decreases. At 3 nodes, the performance is the highest, with a QPS of 1250. As the cluster grows to 5 nodes, 

the QPS drops slightly to 1200, indicating a minimal reduction in throughput. With 7 nodes, the QPS 
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decreases further to 1100, showing a more noticeable performance decline. At 9 nodes, the QPS falls to 

1000, and by 11 nodes, it reaches 900. This consistent decrease in performance is due to the increased 

overhead of managing more nodes and maintaining distributed consistency across the cluster. Despite the 

drop, Serializable reads still provide higher throughput compared to other types of reads, making them a 

strong option for large-scale applications. The trend suggests that although performance diminishes with the 

increasing cluster size, Serializable reads remain relatively efficient and dependable, making them a viable 

choice for larger clusters where consistency and reliability are important. 

 

Cluster Size 

(Nodes) 
Serializable Read QPS 

3 1350 

5 1250 

7 1100 

9 1050 

11 950 

 

Table 5: Serializable Read -2 

 

As per Table 5 if the cluster size increases from 3 to 11 nodes, Serializable Read QPS experiences a steady 

decline. At 3 nodes, the performance is the highest, with a QPS of 1350. When the cluster grows to 5 nodes, 

the QPS drops slightly to 1250, indicating a small reduction in throughput. With 7 nodes, the QPS decreases 

further to 1100, showing a noticeable impact of the added nodes. At 9 nodes, the QPS falls to 1050, and by 

11 nodes, it reaches 950. This consistent decline in performance is expected due to the increasing overhead 

of managing more nodes and maintaining consistency across the cluster. Despite the drop, Serializable reads 

continue to offer better performance compared to other read types, making them a solid choice for larger 

clusters. The trend indicates that as the cluster size increases, performance drops, but Serializable reads still 

provide a reliable and efficient option at scale. 

 

 
 

Graph 5. Serializable Read -2 

 

As per Graph 5  if the  size increases from 3 to 11 nodes, Serializable Read QPS experiences a steady 

decline. At 3 nodes, the performance is the highest, with a QPS of 1350. When the cluster grows to 5 nodes, 

the QPS drops slightly to 1250, indicating a small reduction in throughput. With 7 nodes, the QPS decreases 

further to 1100, showing a noticeable impact of the added nodes. At 9 nodes, the QPS falls to 1050, and by 

11 nodes, it reaches 950. This consistent decline in performance is expected due to the increasing overhead 
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of managing more nodes and maintaining consistency across the cluster. Despite the drop, Serializable reads 

continue to offer better performance compared to other read types, making them a solid choice for larger 

clusters. The trend indicates that as the cluster size increases, performance drops, but Serializable reads still 

provide a reliable and efficient option at scale. 

 

Cluster Size (Nodes) Serializable Read QPS 

3 1500 

5 1300 

7 1150 

9 1100 

11 1000 

Table 6: Serializable Read – 3 

Table 6  As the cluster size increases from 3 to 11 nodes, Serializable Read QPS gradually decreases. At 3 

nodes, the performance is the highest, with a QPS of 1500. As the cluster grows to 5 nodes, the QPS drops 

to 1300, indicating a slight reduction in performance. With 7 nodes, the performance further declines to 

1150, showing that the impact of additional nodes is starting to affect the read performance. At 9 nodes, the 

QPS falls to 1100, and by 11 nodes, it drops to 1000. This shows a consistent decrease in throughput as the 

cluster size increases. The decline in performance is expected due to the added overhead of handling more 

nodes and managing distributed consistency. Despite the drop, Serializable reads still provide relatively 

higher performance compared to other types of reads, making it a suitable choice for larger clusters where 

performance is a priority. The overall trend suggests that while scaling up the cluster size reduces QPS, 

Serializable reads maintain better efficiency across all sizes. 

 

Graph 6: Serializable Read -3 

Graph 6 shows that if the cluster size increases from 3 to 11 nodes, Serializable Read QPS gradually 

decreases. At 3 nodes, the performance is the highest, with a QPS of 1500. As the cluster grows to 5 nodes, 

the QPS drops to 1300, indicating a slight reduction in performance. With 7 nodes, the performance further 

declines to 1150, showing that the impact of additional nodes is starting to affect the read performance. At 9 

nodes, the QPS falls to 1100, and by 11 nodes, it drops to 1000. This shows a consistent decrease in 

throughput as the cluster size increases. The decline in performance is expected due to the added overhead 

of handling more nodes and managing distributed consistency. Despite the drop, Serializable reads still 

provide relatively higher performance compared to other types of reads, making it a suitable choice for 

larger clusters where performance is a priority. The overall trend suggests that while scaling up the cluster 

size reduces QPS, Serializable reads maintain better efficiency across all sizes. 
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luster Size 

(Nodes) 

Linearizable 

Read QPS 

Serializable 

Read QPS 

3 1100 1250 

5 950 1200 

7 850 1100 

9 750 1000 

11 650 900 

Table 7: Linearizable Read vs Serializable Read - 1 

Table 7 shows  that if the cluster size increases from 3 to 11 nodes, both Linearizable and Serializable read 

performance declines, but Serializable reads consistently maintain higher throughput. At 3 nodes, 

Linearizable Read QPS is 1100, while Serializable Read QPS is slightly higher at 1250. As the cluster 

expands to 5 nodes, Linearizable performance drops to 950, with Serializable dropping to 1200. With 7 

nodes, Linearizable QPS decreases further to 850, and Serializable QPS reduces to 1100. At 9 nodes, 

Linearizable QPS falls to 750, while Serializable QPS drops to 1000. Finally, at 11 nodes, Linearizable QPS 

is 650, and Serializable QPS is 900. The performance gap between Linearizable and Serializable remains 

noticeable throughout all cluster sizes. While both read types experience performance degradation with the 

increase in cluster size, Linearizable reads are more significantly affected due to the added overhead of Raft 

consensus. Serializable reads are less impacted, providing relatively better throughput as the cluster size 

grows. 

 

Graph 7: Linearizable Read vs Serializable Read - 1 

Graph 7 shows that if the cluster size increases from 3 to 11 nodes, both Linearizable and Serializable read 

performance declines, but Serializable reads consistently maintain higher throughput. At 3 nodes, 

Linearizable Read QPS is 1100, while Serializable Read QPS is slightly higher at 1250. As the cluster 

expands to 5 nodes, Linearizable performance drops to 950, with Serializable dropping to 1200. With 7 

nodes, Linearizable QPS decreases further to 850, and Serializable QPS reduces to 1100. At 9 nodes, 

Linearizable QPS falls to 750, while Serializable QPS drops to 1000. Finally, at 11 nodes, Linearizable QPS 

is 650, and Serializable QPS is 900. The performance gap between Linearizable and Serializable remains 

noticeable throughout all cluster sizes. While both read types experience performance degradation with the 

increase in cluster size, Linearizable reads are more significantly affected due to the added overhead of Raft 

consensus. Serializable reads are less impacted, providing relatively better throughput as the cluster size 

grows. 
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Cluster Size 

(Nodes) 

Linearizable 

Read QPS 

Serializable 

Read QPS 

3 1200 1350 

5 1050 1250 

7 900 1100 

9 800 1050 

11 700 950 

Table 8: Linearizable Read vs Serializable Read - 2 

Table 8 compares that if the cluster size increases from 3 to 11 nodes, both Linearizable and Serializable 

read performance shows a steady decline, with Serializable reads consistently performing better. At 3 nodes, 

Linearizable Read QPS is 1200, while Serializable Read QPS is slightly higher at 1350. As the cluster grows 

to 5 nodes, Linearizable performance drops to 1050, while Serializable drops to 1250. With 7 nodes, 

Linearizable QPS decreases to 900, and Serializable QPS reduces to 1100. At 9 nodes, Linearizable QPS 

falls to 800, while Serializable QPS drops to 1050. Finally, at 11 nodes, Linearizable QPS is 700, and 

Serializable QPS is 950. The performance gap between Linearizable and Serializable reads remains 

consistent, with Serializable offering slightly better throughput at every cluster size. This pattern suggests 

that while both read types experience a decrease in performance as the cluster grows, the Raft consensus 

overhead impacts Linearizable reads more significantly than Serializable reads. 

 

Graph 8: Linearizable Read vs Serializable Read  - 2 

Graph 8  shows that if the cluster size increases from 3 to 11 nodes, both Linearizable and Serializable read 

performance shows a steady decline, with Serializable reads consistently performing better. At 3 nodes, 

Linearizable Read QPS is 1200, while Serializable Read QPS is slightly higher at 1350. As the cluster grows 

to 5 nodes, Linearizable performance drops to 1050, while Serializable drops to 1250. With 7 nodes, 

Linearizable QPS decreases to 900, and Serializable QPS reduces to 1100. At 9 nodes, Linearizable QPS 

falls to 800, while Serializable QPS drops to 1050. Finally, at 11 nodes, Linearizable QPS is 700, and 

Serializable QPS is 950. The performance gap between Linearizable and Serializable reads remains 

consistent, with Serializable offering slightly better throughput at every cluster size. This pattern suggests 

that while both read types experience a decrease in performance as the cluster grows, the Raft consensus 

overhead impacts Linearizable reads more significantly than Serializable reads. 
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3 1300 1500 

5 1100 1300 

7 950 1150 

9 850 1100 

11 750 1000 

Table 9: Linearizable Read vs Serializable Read - 3 

As per Table 9 if the cluster size increases from 3 to 11 nodes, both Linearizable and Serializable read 

performance experiences a decline, but Serializable reads maintain higher throughput across all cluster sizes. 

At 3 nodes, Linearizable Read QPS is 1300, while Serializable Read QPS is slightly higher at 1500. As the 

cluster grows to 5 nodes, Linearizable performance drops to 1100, while Serializable decreases to 1300. By 

the time the cluster reaches 7 nodes, Linearizable QPS drops further to 950, with Serializable reading at 

1150. At 9 nodes, Linearizable QPS reaches 850, and Serializable performance is 1100. Finally, at 11 nodes, 

Linearizable QPS is 750, and Serializable QPS is 1000. The decrease in Linearizable reads is more 

pronounced due to the increased Raft consensus overhead, while Serializable reads, which do not require 

full consensus, still provide relatively better performance as the cluster size increases. 

 

Graph 9: Linearizable Read vs Serializable Read  - 3 

Graph 9 shows if the cluster size increases from 3 to 11 nodes, Linearizable Read QPS decreases from 1300 

to 750, while Serializable Read QPS drops from 1500 to 1000. Serializable reads consistently outperform 

Linearizable reads across all cluster sizes. The decline in performance is more significant for Linearizable 

reads due to the Raft consensus overhead, which becomes more pronounced with larger clusters. At 3 nodes, 

the difference between Linearizable and Serializable is 200 QPS, but by 11 nodes, the gap narrows to 250 

QPS. Despite the narrowing difference, Serializable reads continue to provide higher performance, 

especially as the cluster size grows. 

EVALUATION 

The evaluation of read performance across varying cluster sizes from 3 to 11 nodes shows that both 

Linearizable and Serializable reads experience a decline as the cluster size increases. However, Serializable 

reads consistently offer better throughput than Linearizable reads at all cluster sizes. At 3 nodes, the 

difference is 150 QPS, and by 11 nodes, it grows to 250 QPS. Linearizable reads are more affected due to 

the increased Raft consensus overhead, while Serializable reads maintain better performance. As the cluster 

grows, both read types face performance degradation, but the gap between them remains consistent. 

Serializable reads prove to be a more reliable choice for larger clusters, especially when performance is a 
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priority. The results suggest that, despite the drop in performance, Serializable reads remain more efficient 

at scale. 

CONCLUSION 

In conclusion, as the cluster size increases, both Linearizable and Serializable reads experience performance 

degradation. However, Serializable reads consistently outperform Linearizable reads due to lower Raft 

consensus overhead. Serializable reads are more efficient and reliable, especially for larger clusters. 

Therefore, they are a better choice when prioritizing performance at scale. 

Future Work: Serializable reads may not guarantee the most up-to-date data, which can be an issue for 

applications requiring immediate consistency. Addressing this limitation could be a focus for future work. 
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