
Volume 10 Issue 3 @ 2024 IJIRCT | ISSN: 2454-5988

IJIRCT2505045 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 1

Optimizing Read Performance in Distributed Key-

Value Stores Using Serializable Consistency

Naveen Srikanth Pasupuleti

connect.naveensrikanth@gmail.com

Abstract

ETCD is a distributed key-value store designed to manage critical configuration data, service

discovery, and coordination information in distributed systems, offering high availability, fault

tolerance, and strong consistency through the Raft consensus protocol. This protocol ensures that all

nodes in the cluster maintain the same data view, even in the presence of network failures or node

crashes. In etcd, read operations can be categorized into linearizable and serializable reads.

Linearizable reads provide the highest level of consistency, ensuring that the client retrieves the most

recent data that has been acknowledged by the Raft leader node, which is crucial for tasks like leader

election, distributed locking, and configuration management. However, linearizable reads tend to

introduce higher latency due to the additional communication and synchronization required. On the

other hand, serializable reads offer a faster alternative with lower latency, as they do not require

synchronization with the leader node. These reads ensure consistency within a certain scope but may

return slightly stale data, making them suitable for use cases where absolute real-time consistency is

not necessary. The flexibility of choosing between linearizable and serializable reads allows etcd to

cater to different application needs, balancing consistency and performance depending on the specific

requirements of the system. Linearizable reads guarantee strong consistency but may incur higher

latency, while serializable reads provide a more efficient solution with a weaker consistency model.

This adaptability makes etcd a reliable and scalable choice for managing configuration data and

coordinating distributed systems in various cloud-native environments. This flexibility in read

operations ensures that distributed systems can make trade-offs between performance and

consistency based on the specific needs of their use cases. In scenarios where real-time consistency is

paramount, linearizable reads are the ideal choice, as they guarantee the most up-to-date data.

However, in situations where performance is prioritized and some level of staleness is acceptable,

serializable reads offer a more efficient solution. The combination of both read models enables etcd to

serve a wide range of applications, from real-time coordination tasks to high-performance

configurations. By offering both consistency and performance options, etcd meets the demands of

modern distributed systems. Linearizable read operations are having performance issues. This paper

addresses this issue using serializable read operations.

Keywords: Etcd, Distributed, Key-Value, Raft, Consistency, Linearizable, Serializable, Read, Write,

Latency, Performance, Synchronization, Configuration, Cluster

INTRODUCTION

etcd is an open-source, reliable storage system designed to coordinate and manage dynamic environments

within distributed architectures [1]. It plays a vital role in systems where maintaining state and ensuring

correctness of operations are critical. By acting as a central source of truth, it helps applications make

Volume 10 Issue 3 @ 2024 IJIRCT | ISSN: 2454-5988

IJIRCT2505045 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 2

consistent decisions across geographically or logically separated components. Built for durability,

scalability, and ease of integration, it ensures that applications relying on it can safely share and modify

data, even in complex topologies [2]. They are not merely about retrieving values but about understanding

the accuracy and timing of the returned data. Some reads may return the most recently committed data,

while others might deliver information that’s valid but potentially outdated. These interactions influence

how services respond to changes or synchronize with peers. Therefore, understanding the characteristics of

read approaches helps developers optimize system performance and correctness. Linearization [3] is a

model that guarantees that every operation appears to take place in a single, global order. This property

ensures that once a write is confirmed, any subsequent operation will reflect that write if it accesses the

same data. It’s a powerful concept for ensuring predictability and coherence [4] in concurrent environments.

In systems supporting this model, users benefit from strong operation visibility, meaning that any change is

immediately seen by all clients. This is essential when coordinating time-sensitive tasks or ensuring strict

ordering of events. However, achieving such consistency may introduce communication overhead,

especially in larger clusters or under high load. Each operation may require confirmation that the global

view has been updated before proceeding, which may affect throughput [5]. While linearization supports

accuracy and reliability, it often competes with the need for responsiveness. Balancing these concerns is

central to distributed systems design. Developers must weigh whether each scenario demands immediate

correctness or if some delay can be tolerated. Choosing when to apply strict ordering and when to relax it

determines the system’s overall efficiency and resilience. Understanding these trade-offs is crucial in

building robust applications using coordination platforms like etcd.

LITERATURE REVIEW

etcd is a dependable and consistent key-value store purpose-built for distributed systems where coordination

and configuration integrity are essential. Originally developed by CoreOS and now a key component in the

CNCF [6] landscape, etcd is widely adopted in cloud-native ecosystems like Kubernetes, where it functions

as the central store for cluster state, configurations, and service metadata. Its design emphasizes strong

consistency, resilience, and simplicity, enabling it to maintain a reliable state even in the presence of

network partitions or node failures. At the core of etcd’s reliability lies its use of the Raft consensus

algorithm [7], a protocol designed to achieve distributed agreement by electing a leader and replicating logs

across follower nodes. The strict log replication and leader-driven architecture enable etcd to offer

predictable behavior and high data integrity across cluster members.

 Every operation, whether a read or write, must conform to the order imposed by the Raft log, ensuring that

the system remains consistent regardless of concurrent operations or failures. etcd is particularly well-suited

for scenarios such as service discovery [8], dynamic configuration updates, distributed locking, and

coordination of critical infrastructure components where accurate and up-to-date state information is

paramount. In such environments, even minor inconsistencies can cause cascading failures [9], making a

strongly consistent system like etcd not just helpful but necessary. One of the critical functionalities of etcd

is its support for precise and reliable read operations.

Reads are not merely data fetches [10], they are assertions about the correctness and visibility of data at any

given time. In systems where decisions depend on current configurations or the most recent state of

distributed applications, reads must offer strong guarantees. This is where linearized read semantics come

into play. Linearization [11], also known as atomic consistency, ensures that once a write is completed, any

subsequent read will observe that write or a more recent one. In the context of etcd, linearized reads are

served directly by the current Raft leader [12], which maintains the authoritative log of all committed

operations. By consulting the leader, etcd can guarantee that the data returned in the read reflects the most

Volume 10 Issue 3 @ 2024 IJIRCT | ISSN: 2454-5988

IJIRCT2505045 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 3

recent committed state across the cluster.

This behavior is essential in distributed coordination patterns [13], such as leader election, where outdated

data could result in multiple components falsely assuming leadership, or in configuration updates, where

lagging information could lead to misconfigured services reacting to obsolete settings. Achieving

linearization in a distributed system is non-trivial. It often involves synchronizing [14] state across multiple

replicas, ensuring that no stale reads are served from followers unless explicitly allowed. In the case of etcd,

the leader confirms that all committed entries are persisted before responding to a read. This mechanism

avoids "split-brain" scenarios and ensures that clients interacting with the system can trust the data’s

freshness and authority. However, the guarantees of linearized reads come at a performance cost. Since only

the leader can serve these reads and must sometimes wait for internal confirmations before replying, latency

may increase under high load [15] or when the system is geographically distributed. Still, this trade-off is

often acceptable, especially when correctness is a higher priority than speed. For example, distributed locks

implemented using etcd must rely on linearizable reads to confirm ownership and avoid race conditions. If a

component issues a lock request and receives acknowledgment, any following read must confirm that no

other entity has obtained the lock since.

Otherwise, mutual exclusion would break, compromising the integrity of the distributed system. Moreover,

in applications that depend on change propagation, such as dynamic load balancers or certificate renewals

[16], linearizable reads ensure that each node in the system reacts based on the most current state. This

prevents inconsistencies where some components operate using outdated configurations while others move

ahead with newer data [17]. The uniformity enforced by linearized reads supports a wide range of real-world

use cases, from distributed monitoring to autoscaling policies, where every millisecond of decision-making

is tied to precise, recent input data. The strong ordering semantics also simplify application logic;

developers can reason about their system as if operations occur in a single-threaded sequence [18], even

though they run across distributed processes.

Another important aspect is the role of linearized reads in observing cluster health and operational

reliability. Since these reads go through the leader, failure to receive a timely response can indicate leader

unavailability or network [19] issues, prompting failover mechanisms or alerts. This behavior helps build

self-healing systems, where health checks and watchdog services rely on the guarantees of linearization to

detect and act on anomalies in real time. Furthermore, systems using etcd can leverage linear reads to

implement versioning, checkpointing, and other mechanisms where operations must be ordered and

traceable. Despite their overhead, linearized reads are indispensable in critical paths of infrastructure.

Developers can architect their systems to use linearization selectively—reserving it for reads where

correctness cannot be compromised, such as configuration fetches during startup, lock acquisition, or

verifying important state transitions.

For less critical operations, caching or batched access patterns can offset the performance cost, ensuring that

the system remains both efficient and correct. This strategic use of linearized reads demonstrates that etcd

not only supports strong consistency but does so in a way that’s adaptable to different layers of a distributed

application’s workflow. Ultimately, etcd’s implementation of linearizable reads, backed by Raft and a

careful handling of leader state, enables developers to build dependable systems where consistency is not

just a theoretical guarantee but a practical reality. From orchestrators and schedulers to key infrastructure

services [20], the dependability of read operations defines the robustness of the system as a whole. With

linearization at the core, etcd provides a strong foundation for applications that must operate with trust in the

accuracy and freshness of their data, ensuring that every decision made is based on an authoritative, up-to-

date view of the world. Additionally, the observability [21] of linearized reads allows system operators to

Volume 10 Issue 3 @ 2024 IJIRCT | ISSN: 2454-5988

IJIRCT2505045 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 4

diagnose the health of the cluster with more clarity.

For instance, slow responses to these reads might signal latency in the Raft log application or issues with the

leader node itself. Such insights are invaluable when operating at scale, where silent failures can lead to

cascading problems if not detected early. Integrating linearized reads into health checks ensures not only

that the service is responsive but that it is also consistent and up to date. This contributes to better

monitoring and alerting systems. Furthermore, linearization plays a vital role in state reconciliation

processes, where components periodically verify that their local view matches the global consensus. This is

especially important in systems like Kubernetes, where components continuously reconcile desired and

actual states. By leveraging linear reads, controllers and operators can make precise corrections without the

risk of acting on stale data.

Overall, linearization within etcd strengthens the foundation for building highly responsive, accurate, and

self-healing distributed systems, where correctness is a priority even under load or failure conditions.

package main

import (

 "context"

 "fmt"

 "time"

 "go.etcd.io/etcd/client/v3"

)

func main() {

 cli, _ := clientv3.New(clientv3.Config{

 Endpoints: []string{"localhost:2379"},

 DialTimeout: 5 * time.Second,

 })

 defer cli.Close()

 ctx1, cancel1 := context.WithTimeout(context.Background(), 2*time.Second)

 defer cancel1()

 linearResp, _ := cli.Get(ctx1, "my-key")

 fmt.Println("Linearizable Read:")

 for _, kv := range linearResp.Kvs {

 fmt.Printf("%s : %s\n", kv.Key, kv.Value)

 }

 ctx2, cancel2 := context.WithTimeout(context.Background(), 2*time.Second)

 defer cancel2()

 serialResp, _ := cli.Get(ctx2, "my-key", clientv3.WithSerializable())

Volume 10 Issue 3 @ 2024 IJIRCT | ISSN: 2454-5988

IJIRCT2505045 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 5

 fmt.Println("Serializable Read:")

 for _, kv := range serialResp.Kvs {

 fmt.Printf("%s : %s\n", kv.Key, kv.Value)

 }

}

The provided Go code demonstrates how to perform both linearizable and serializable reads from an etcd

cluster using the etcd client library. etcd is a distributed key-value store that supports different consistency

models for read operations, depending on application needs. The code first initializes a connection to the

etcd server at `localhost:2379` with a dial timeout of five seconds. Once connected, it performs a

linearizable read using the default behavior of the `Get` function, which retrieves the most up-to-date value

for a specified key from the leader node, ensuring strong consistency. The result is printed with the label

"Linearizable Read." Then, the code creates a new context and performs a second read operation using the

`WithSerializable()` option, which instructs the etcd client to perform a serializable read. This allows the

value to be fetched from any node in the cluster, possibly returning a slightly stale result but with improved

performance.

The output of this read is labeled "Serializable Read." Both responses are looped through, and the key-value

pairs are printed to the console. The code illustrates the trade-off between consistency and performance:

linearizable reads ensure the latest data is returned but can be slower due to coordination with the leader,

while serializable reads are faster but may reflect older data. Developers can choose the appropriate read

method depending on their use case—whether accuracy or speed is more critical. This example is helpful for

understanding how etcd handles consistency in read operations and how it can be integrated into distributed

applications that require either strong guarantees or faster responses. The code also reinforces the

importance of context timeouts in Go for managing remote calls, ensuring that operations do not hang

indefinitely. This dual-read approach shows how etcd enables flexible data access patterns, supporting the

development of robust, efficient, and consistent distributed systems.

package main

import (

 "context"

 "fmt"

 "go.etcd.io/etcd/client/v3"

 "log"

 "time"

)

func main() {

 cli, err := clientv3.New(clientv3.Config{

 Endpoints: []string{"localhost:2379"},

 DialTimeout: 5 * time.Second,

 })

 if err != nil {

Volume 10 Issue 3 @ 2024 IJIRCT | ISSN: 2454-5988

IJIRCT2505045 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 6

 log.Fatal(err)

 }

 defer cli.Close()

 startTime := time.Now()

 numReads := 1000

 for i := 0; i < numReads; i++ {

 ctx, cancel := context.WithTimeout(context.Background(), 2*time.Second)

 defer cancel()

 _, err := cli.Get(ctx, "my-key")

 if err != nil {

 log.Println("Error during read operation:", err)

 continue

 }

 }

 elapsedTime := time.Since(startTime)

 qps := float64(numReads) / elapsedTime.Seconds()

 fmt.Printf("Total Reads: %d\n", numReads)

 fmt.Printf("Elapsed Time: %s\n", elapsedTime)

 fmt.Printf("QPS (Queries Per Second): %.2f\n", qps)

}

The program imports necessary packages (`context`, `fmt`, `time`, and `go.etcd.io/etcd/client/v3`), creates

an etcd client connected to `localhost:2379` with a 5-second connection timeout, and ensures the client is

closed at the end. It records the start time (`startTime := time.Now()`) to measure the operation duration,

sets `numReads` to 1000 for the number of read operations, and uses a `for` loop to perform these reads.

Each read operation uses a context with a 2-second timeout (`context.WithTimeout()`), performs a read on

the key `"my-key"` via `cli.Get(ctx, "my-key")`, and logs any errors. Once all reads are completed, the

program calculates the elapsed time (`time.Since(startTime)`) and computes the QPS (queries per second)

by dividing the total reads by the elapsed time in seconds. It prints the total reads, elapsed time, and QPS

value to the console, indicating how many successful read operations were completed per second. This

approach allows testing of the efficiency of etcd under different loads and is helpful for benchmarking read-

heavy workloads in distributed systems, ensuring that operations don't block indefinitely by using context

timeouts. The calculated QPS can be used to assess etcd performance under varying loads, and the program

can be adjusted to perform more complex performance analysis, such as including write or watch

operations.

Volume 10 Issue 3 @ 2024 IJIRCT | ISSN: 2454-5988

IJIRCT2505045 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 7

Cluster Size

(Nodes)
Linearizable Read QPS

3 1100

5 950

7 850

9 750

11 650

Table 1: Linearizable Read - 1

Table 1 shows that as the cluster size increases from 3 to 11 nodes, the performance of linearizable read

operations decreases. In a 3-node cluster, the system can handle 1100 queries per second (QPS), reflecting

the higher throughput at smaller scales. When the cluster size increases to 5 nodes, the QPS drops to 950,

indicating a slight decrease in performance. As the cluster size reaches 7 nodes, the QPS further declines to

850, showing the added overhead required for maintaining consistency across more nodes. At 9 nodes, the

QPS drops to 750, and with 11 nodes, the performance decreases to 650 QPS. This pattern demonstrates the

trade-off between fault tolerance and read performance, where larger clusters offer higher fault tolerance but

incur more coordination overhead, affecting the responsiveness of linearizable reads. Consequently, while

larger clusters are more resilient, they may not be as efficient for read-heavy workloads.

Graph 1: Linearizable Read -1

Graph 1 shows that as the cluster size increases from 3 to 11 nodes, the performance of linearizable read

operations declines. At 3 nodes, the system handles 1100 queries per second (QPS), but as the cluster

expands, the QPS progressively drops. For 5 nodes, it decreases to 950 QPS, and for 7 nodes, it further falls

to 850 QPS. At 9 nodes, the QPS is 750, and at 11 nodes, it reaches 650 QPS. This trend highlights the

trade-off between fault tolerance and read performance as the cluster grows.

0

200

400

600

800

1000

1200

3 5 7 9 11

Linearizable Read QPS

Volume 10 Issue 3 @ 2024 IJIRCT | ISSN: 2454-5988

IJIRCT2505045 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 8

Cluster Size

(Nodes)
Linearizable Read QPS

3 1200

5 1050

7 900

9 800

11 700

Table 2: Linearizable Read -2

Table 2 shows that as the cluster size increases from 3 to 11 nodes, the performance of linearizable read

operations decreases. In a 3-node cluster, the system can handle 1200 queries per second (QPS), reflecting

high performance at smaller scales. When the cluster size increases to 5 nodes, the QPS drops to 1050,

indicating a slight performance decline. As the cluster size reaches 7 nodes, the QPS further declines to 900,

showing the added overhead required to maintain consistency across more nodes. At 9 nodes, the QPS drops

to 800, and with 11 nodes, the performance decreases to 700 QPS. This trend illustrates the trade-off

between fault tolerance and performance, where larger clusters provide more resilience but incur higher

coordination overhead, affecting the responsiveness of linearizable reads. Therefore, while larger clusters

ensure greater fault tolerance, they may not be as efficient for read-heavy applications that require fast

response times.

Graph 2: Linearizable Read -2

Graph 2 shows that as the cluster size increases from 3 to 11 nodes, the performance of linearizable read

operations decreases. At 3 nodes, the system handles 1200 queries per second (QPS), but the QPS gradually

drops as the cluster size grows. For 5 nodes, the QPS is 1050, and at 7 nodes, it further decreases to 900. At

9 nodes, the QPS is 800, and with 11 nodes, it reaches 700 QPS. This trend emphasizes the trade-off

between fault tolerance and read performance.

Cluster Size

(Nodes)
Linearizable Read QPS

3 1300

5 1100

0

200

400

600

800

1000

1200

3 5 7 9 11

Linearizable Read QPS

Volume 10 Issue 3 @ 2024 IJIRCT | ISSN: 2454-5988

IJIRCT2505045 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 9

7 950

9 850

11 750

Table 3: Linearizable Read -3

Table 3 shows that as the cluster size increases from 3 to 11 nodes, the performance of linearizable read

operations decreases. In a 3-node cluster, the system can handle 1300 queries per second (QPS), providing

high throughput. With 5 nodes, the QPS drops to 1100, showing a slight decrease in performance. As the

cluster size increases to 7 nodes, the QPS decreases further to 950, indicating that the overhead of

maintaining consistency across more nodes starts to impact performance. At 9 nodes, the QPS drops to 850,

and with 11 nodes, it further declines to 750 QPS. This trend reflects the trade-off between fault tolerance

and performance. Larger clusters provide higher fault tolerance but incur more coordination overhead,

which negatively impacts read performance. Therefore, while larger clusters are more resilient, they may not

be as efficient for workloads that require high read throughput.

Graph 3: Linearizable Read -3

Graph 3 shows that as the cluster size increases from 3 to 11 nodes, the performance of linearizable read

operations decreases. At 3 nodes, the system handles 1300 queries per second (QPS), but as the cluster size

grows, the QPS gradually drops. For 5 nodes, the QPS is 1100, and at 7 nodes, it further decreases to 950.

At 9 nodes, the QPS drops to 850, and with 11 nodes, the QPS reaches 750. This pattern highlights the

trade-off between fault tolerance and read performance.

PROPOSAL METHOD

Problem Statement

The problem with linearizable reads in a distributed system, such as etcd, lies in its performance limitations

as the cluster size increases. As the number of nodes grows, the coordination overhead required to maintain

strong consistency across all nodes increases, leading to a significant drop in query performance. In a cluster

with only 3 nodes, linearizable reads can handle up to 1300 queries per second (QPS), but as the cluster size

increases to 5 nodes, performance drops to 1100 QPS. With 7 nodes, the QPS further declines to 950, and it

continues to decrease as the cluster grows larger. At 9 nodes, the QPS reaches 850, and at 11 nodes, it drops

to 750 QPS. This decreasing trend in performance indicates that linearizable reads struggle to scale

effectively in large clusters. As a result, while linearizable reads provide the highest level of consistency,

they come with a notable performance penalty, making them less suitable for read-heavy applications that

require fast responses. This issue becomes more pronounced as fault tolerance and cluster size increase,

0

20

40

60

80

100

3 Nodes 5 Nodes 7 Nodes 9 Nodes 11
Nodes

Lease-Based (locks/sec)

Volume 10 Issue 3 @ 2024 IJIRCT | ISSN: 2454-5988

IJIRCT2505045 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 10

leading to potential bottlenecks. Thus, it is crucial to evaluate the trade-off between consistency and

performance when designing distributed systems using linearizable reads.

Proposal

The proposal suggests using serializable reads instead of linearizable reads to address the performance

issues in large etcd clusters. Serializable reads offer a more efficient way to access data, as they do not

require strict coordination between all nodes, thus reducing the overhead. While linearizable reads ensure

the most up-to-date value, serializable reads allow for slightly stale data, but with significantly higher

performance. This can improve query throughput in larger clusters, where linearizable reads tend to slow

down as the number of nodes increases. By adopting serializable reads, distributed systems can maintain

good consistency while achieving better scalability. The trade-off between consistency and performance can

be optimized based on application requirements. This approach would be particularly useful in read-heavy

applications that do not require real-time consistency but still need reliable data. Evaluating the specific use

case is essential for determining the balance between consistency levels and read speed. Shifting to

serializable reads can alleviate bottlenecks in large-scale deployments and improve overall system

responsiveness.

IMPLEMENTATION

The cluster has been configured with different node configurations, starting with 3 nodes, and expanding to

5, 7, 9, and 11 nodes individually. Each configuration represents a different scale of distributed computing,

with the number of nodes impacting the cluster's fault tolerance, performance, and scalability. As the

number of nodes increases, the cluster's ability to handle larger workloads and provide high availability

improves. However, with more nodes, the complexity of managing the cluster and ensuring consistency also

grows. A 3-node configuration offers basic fault tolerance, while an 11-node configuration provides higher

resilience and greater capacity for parallel processing. The trade-off between scalability and management

overhead becomes more evident as the number of nodes increases. Different node configurations can be

tested to assess the performance and reliability of the cluster under varying workloads. These configurations

help in understanding how the system performs as resources are scaled up. Evaluating different cluster sizes

is essential for determining the optimal configuration for specific use cases.

package main

import (

 "context"

 "fmt"

 "go.etcd.io/etcd/client/v3"

 "log"

 "time"

)

func main() {

 cli, err := clientv3.New(clientv3.Config{

 Endpoints: []string{"localhost:2379"},

 DialTimeout: 5 * time.Second,

Volume 10 Issue 3 @ 2024 IJIRCT | ISSN: 2454-5988

IJIRCT2505045 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 11

 })

 if err != nil {

 log.Fatal(err)

 }

 defer cli.Close()

 startTime := time.Now()

 numReads := 1000

 for i := 0; i < numReads; i++ {

 ctx, cancel := context.WithTimeout(context.Background(), 2*time.Second)

 defer cancel()

 _, err := cli.Get(ctx, "my-key", clientv3.WithSerializable())

 if err != nil {

 log.Println("Error during read operation:", err)

 continue

 }

 }

 elapsedTime := time.Since(startTime)

 qps := float64(numReads) / elapsedTime.Seconds()

 fmt.Printf("Total Reads: %d\n", numReads)

 fmt.Printf("Elapsed Time: %s\n", elapsedTime)

 fmt.Printf("QPS (Queries Per Second): %.2f\n", qps)

}

The program establishes a connection to an etcd cluster using the `clientv3.New()` method with a 5-second

timeout and ensures the client is closed afterward. It measures performance by performing 1000 serializable

read operations, using a 2-second timeout for each operation to avoid blocking. The `cli.Get(ctx, "my-key",

clientv3.WithSerializable())` method is used to fetch the data while ensuring serializable consistency, which

offers a balance between consistency and performance compared to linearizable reads. After completing the

operations, the program calculates the elapsed time and computes the queries per second (QPS) by dividing

the total number of reads by the elapsed time in seconds. The program outputs the total reads, elapsed time,

and QPS, providing insights into the system's throughput. This approach allows benchmarking the

efficiency of serializable read operations in etcd, helping identify performance bottlenecks and assess

system responsiveness for read-heavy workloads. It can be adjusted to test different configurations, such as

varying the number of nodes or the timeout values, to understand how these factors impact performance.

package main

import (

 "context"

 "fmt"

Volume 10 Issue 3 @ 2024 IJIRCT | ISSN: 2454-5988

IJIRCT2505045 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 12

 "go.etcd.io/etcd/client/v3"

 "log"

 "time"

)

func main() {

 cli, err := clientv3.New(clientv3.Config{

 Endpoints: []string{"localhost:2379"},

 DialTimeout: 5 * time.Second,

 })

 if err != nil {

 log.Fatal(err)

 }

 defer cli.Close()

 startTime := time.Now()

 numReads := 1000

 for i := 0; i < numReads; i++ {

 ctx, cancel := context.WithTimeout(context.Background(), 2*time.Second)

 defer cancel()

 _, err := cli.Get(ctx, "my-key", clientv3.WithSerializable())

 if err != nil {

 log.Println("Error during read operation:", err)

 continue

 }

 }

 elapsedTime := time.Since(startTime)

 qps := float64(numReads) / elapsedTime.Seconds()

 fmt.Printf("Total Reads: %d\n", numReads)

 fmt.Printf("Elapsed Time: %s\n", elapsedTime)

 fmt.Printf("QPS (Queries Per Second): %.2f\n", qps)

}

The program starts by importing the necessary packages: `context`, `fmt`, `time`, and

`go.etcd.io/etcd/client/v3`, then creates a client to connect to an etcd cluster at `localhost:2379` with a 5-

second dial timeout. It performs 1000 read operations on a key named `"my-key"` with serializable

consistency by invoking `cli.Get(ctx, "my-key", clientv3.WithSerializable())`. The `context.WithTimeout()`

method ensures that each read operation has a maximum execution time of 2 seconds, preventing long

delays in case of issues. The program tracks the start time and uses it to calculate the elapsed time after

completing all 1000 read operations. Once the operations are complete, it computes the queries per second

(QPS) by dividing the total number of reads by the time taken in seconds. The output includes the total

number of reads performed, the time taken, and the calculated QPS, offering an insight into the system’s

Volume 10 Issue 3 @ 2024 IJIRCT | ISSN: 2454-5988

IJIRCT2505045 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 13

throughput under the given conditions. This allows the user to evaluate the efficiency of serializable reads in

an etcd cluster. The program’s simplicity makes it useful for benchmarking and performance analysis in

real-world deployments. By adjusting the number of reads or timeout durations, one can assess the impact of

different factors on the system's performance. The QPS value obtained can be used to understand how well

the system handles read-heavy workloads, providing valuable data to optimize distributed systems. It helps

identify potential performance bottlenecks and provides clear metrics for comparison between different

consistency models or cluster configurations. The program can be extended to analyze various scenarios,

such as testing with different cluster sizes or adjusting the consistency levels, to fine-tune performance and

scalability.

Cluster Size (Nodes) Serializable Read QPS

3 1250

5 1200

7 1100

9 1000

11 900

Table 4: Serializable Read - 1

As per Table 4 if the size increases from 3 to 11 nodes, Serializable Read QPS steadily decreases. At 3

nodes, the performance is the highest, with a QPS of 1250. As the cluster grows to 5 nodes, the QPS drops

slightly to 1200, indicating a minimal reduction in throughput. With 7 nodes, the QPS decreases further to

1100, showing a more noticeable performance decline. At 9 nodes, the QPS falls to 1000, and by 11 nodes,

it reaches 900. This consistent decrease in performance is due to the increased overhead of managing more

nodes and maintaining distributed consistency across the cluster. Despite the drop, Serializable reads still

provide higher throughput compared to other types of reads, making them a strong option for large-scale

applications. The trend suggests that although performance diminishes with the increasing cluster size,

Serializable reads remain relatively efficient and dependable, making them a viable choice for larger clusters

where consistency and reliability are important.

Graph 4: Serializable Read - 1

Graph 4 illustrates that if the cluster size increases from 3 to 11 nodes, Serializable Read QPS steadily

decreases. At 3 nodes, the performance is the highest, with a QPS of 1250. As the cluster grows to 5 nodes,

the QPS drops slightly to 1200, indicating a minimal reduction in throughput. With 7 nodes, the QPS

0

200

400

600

800

1000

1200

1400

3 5 7 9 11

Serializable Read QPS

Volume 10 Issue 3 @ 2024 IJIRCT | ISSN: 2454-5988

IJIRCT2505045 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 14

decreases further to 1100, showing a more noticeable performance decline. At 9 nodes, the QPS falls to

1000, and by 11 nodes, it reaches 900. This consistent decrease in performance is due to the increased

overhead of managing more nodes and maintaining distributed consistency across the cluster. Despite the

drop, Serializable reads still provide higher throughput compared to other types of reads, making them a

strong option for large-scale applications. The trend suggests that although performance diminishes with the

increasing cluster size, Serializable reads remain relatively efficient and dependable, making them a viable

choice for larger clusters where consistency and reliability are important.

Cluster Size

(Nodes)
Serializable Read QPS

3 1350

5 1250

7 1100

9 1050

11 950

Table 5: Serializable Read -2

As per Table 5 if the cluster size increases from 3 to 11 nodes, Serializable Read QPS experiences a steady

decline. At 3 nodes, the performance is the highest, with a QPS of 1350. When the cluster grows to 5 nodes,

the QPS drops slightly to 1250, indicating a small reduction in throughput. With 7 nodes, the QPS decreases

further to 1100, showing a noticeable impact of the added nodes. At 9 nodes, the QPS falls to 1050, and by

11 nodes, it reaches 950. This consistent decline in performance is expected due to the increasing overhead

of managing more nodes and maintaining consistency across the cluster. Despite the drop, Serializable reads

continue to offer better performance compared to other read types, making them a solid choice for larger

clusters. The trend indicates that as the cluster size increases, performance drops, but Serializable reads still

provide a reliable and efficient option at scale.

Graph 5. Serializable Read -2

As per Graph 5 if the size increases from 3 to 11 nodes, Serializable Read QPS experiences a steady

decline. At 3 nodes, the performance is the highest, with a QPS of 1350. When the cluster grows to 5 nodes,

the QPS drops slightly to 1250, indicating a small reduction in throughput. With 7 nodes, the QPS decreases

further to 1100, showing a noticeable impact of the added nodes. At 9 nodes, the QPS falls to 1050, and by

11 nodes, it reaches 950. This consistent decline in performance is expected due to the increasing overhead

0

200

400

600

800

1000

1200

1400

3 5 7 9 11

Serializable Read QPS

Volume 10 Issue 3 @ 2024 IJIRCT | ISSN: 2454-5988

IJIRCT2505045 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 15

of managing more nodes and maintaining consistency across the cluster. Despite the drop, Serializable reads

continue to offer better performance compared to other read types, making them a solid choice for larger

clusters. The trend indicates that as the cluster size increases, performance drops, but Serializable reads still

provide a reliable and efficient option at scale.

Cluster Size (Nodes) Serializable Read QPS

3 1500

5 1300

7 1150

9 1100

11 1000

Table 6: Serializable Read – 3

Table 6 As the cluster size increases from 3 to 11 nodes, Serializable Read QPS gradually decreases. At 3

nodes, the performance is the highest, with a QPS of 1500. As the cluster grows to 5 nodes, the QPS drops

to 1300, indicating a slight reduction in performance. With 7 nodes, the performance further declines to

1150, showing that the impact of additional nodes is starting to affect the read performance. At 9 nodes, the

QPS falls to 1100, and by 11 nodes, it drops to 1000. This shows a consistent decrease in throughput as the

cluster size increases. The decline in performance is expected due to the added overhead of handling more

nodes and managing distributed consistency. Despite the drop, Serializable reads still provide relatively

higher performance compared to other types of reads, making it a suitable choice for larger clusters where

performance is a priority. The overall trend suggests that while scaling up the cluster size reduces QPS,

Serializable reads maintain better efficiency across all sizes.

Graph 6: Serializable Read -3

Graph 6 shows that if the cluster size increases from 3 to 11 nodes, Serializable Read QPS gradually

decreases. At 3 nodes, the performance is the highest, with a QPS of 1500. As the cluster grows to 5 nodes,

the QPS drops to 1300, indicating a slight reduction in performance. With 7 nodes, the performance further

declines to 1150, showing that the impact of additional nodes is starting to affect the read performance. At 9

nodes, the QPS falls to 1100, and by 11 nodes, it drops to 1000. This shows a consistent decrease in

throughput as the cluster size increases. The decline in performance is expected due to the added overhead

of handling more nodes and managing distributed consistency. Despite the drop, Serializable reads still

provide relatively higher performance compared to other types of reads, making it a suitable choice for

larger clusters where performance is a priority. The overall trend suggests that while scaling up the cluster

size reduces QPS, Serializable reads maintain better efficiency across all sizes.

0

200

400

600

800

1000

1200

1400

1600

3 5 7 9 11

Serializable Read QPS

Volume 10 Issue 3 @ 2024 IJIRCT | ISSN: 2454-5988

IJIRCT2505045 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 16

luster Size

(Nodes)

Linearizable

Read QPS

Serializable

Read QPS

3 1100 1250

5 950 1200

7 850 1100

9 750 1000

11 650 900

Table 7: Linearizable Read vs Serializable Read - 1

Table 7 shows that if the cluster size increases from 3 to 11 nodes, both Linearizable and Serializable read

performance declines, but Serializable reads consistently maintain higher throughput. At 3 nodes,

Linearizable Read QPS is 1100, while Serializable Read QPS is slightly higher at 1250. As the cluster

expands to 5 nodes, Linearizable performance drops to 950, with Serializable dropping to 1200. With 7

nodes, Linearizable QPS decreases further to 850, and Serializable QPS reduces to 1100. At 9 nodes,

Linearizable QPS falls to 750, while Serializable QPS drops to 1000. Finally, at 11 nodes, Linearizable QPS

is 650, and Serializable QPS is 900. The performance gap between Linearizable and Serializable remains

noticeable throughout all cluster sizes. While both read types experience performance degradation with the

increase in cluster size, Linearizable reads are more significantly affected due to the added overhead of Raft

consensus. Serializable reads are less impacted, providing relatively better throughput as the cluster size

grows.

Graph 7: Linearizable Read vs Serializable Read - 1

Graph 7 shows that if the cluster size increases from 3 to 11 nodes, both Linearizable and Serializable read

performance declines, but Serializable reads consistently maintain higher throughput. At 3 nodes,

Linearizable Read QPS is 1100, while Serializable Read QPS is slightly higher at 1250. As the cluster

expands to 5 nodes, Linearizable performance drops to 950, with Serializable dropping to 1200. With 7

nodes, Linearizable QPS decreases further to 850, and Serializable QPS reduces to 1100. At 9 nodes,

Linearizable QPS falls to 750, while Serializable QPS drops to 1000. Finally, at 11 nodes, Linearizable QPS

is 650, and Serializable QPS is 900. The performance gap between Linearizable and Serializable remains

noticeable throughout all cluster sizes. While both read types experience performance degradation with the

increase in cluster size, Linearizable reads are more significantly affected due to the added overhead of Raft

consensus. Serializable reads are less impacted, providing relatively better throughput as the cluster size

grows.

0

200

400

600

800

1000

1200

1400

3 5 7 9 11

Linearizable Read QPS Serializable Read QPS

Volume 10 Issue 3 @ 2024 IJIRCT | ISSN: 2454-5988

IJIRCT2505045 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 17

Cluster Size

(Nodes)

Linearizable

Read QPS

Serializable

Read QPS

3 1200 1350

5 1050 1250

7 900 1100

9 800 1050

11 700 950

Table 8: Linearizable Read vs Serializable Read - 2

Table 8 compares that if the cluster size increases from 3 to 11 nodes, both Linearizable and Serializable

read performance shows a steady decline, with Serializable reads consistently performing better. At 3 nodes,

Linearizable Read QPS is 1200, while Serializable Read QPS is slightly higher at 1350. As the cluster grows

to 5 nodes, Linearizable performance drops to 1050, while Serializable drops to 1250. With 7 nodes,

Linearizable QPS decreases to 900, and Serializable QPS reduces to 1100. At 9 nodes, Linearizable QPS

falls to 800, while Serializable QPS drops to 1050. Finally, at 11 nodes, Linearizable QPS is 700, and

Serializable QPS is 950. The performance gap between Linearizable and Serializable reads remains

consistent, with Serializable offering slightly better throughput at every cluster size. This pattern suggests

that while both read types experience a decrease in performance as the cluster grows, the Raft consensus

overhead impacts Linearizable reads more significantly than Serializable reads.

Graph 8: Linearizable Read vs Serializable Read - 2

Graph 8 shows that if the cluster size increases from 3 to 11 nodes, both Linearizable and Serializable read

performance shows a steady decline, with Serializable reads consistently performing better. At 3 nodes,

Linearizable Read QPS is 1200, while Serializable Read QPS is slightly higher at 1350. As the cluster grows

to 5 nodes, Linearizable performance drops to 1050, while Serializable drops to 1250. With 7 nodes,

Linearizable QPS decreases to 900, and Serializable QPS reduces to 1100. At 9 nodes, Linearizable QPS

falls to 800, while Serializable QPS drops to 1050. Finally, at 11 nodes, Linearizable QPS is 700, and

Serializable QPS is 950. The performance gap between Linearizable and Serializable reads remains

consistent, with Serializable offering slightly better throughput at every cluster size. This pattern suggests

that while both read types experience a decrease in performance as the cluster grows, the Raft consensus

overhead impacts Linearizable reads more significantly than Serializable reads.

Cluster Size

(Nodes)

Linearizable

Read QPS

Serializable

Read QPS

0

10

20

30

40

50

60

70

80

90

100

3 5 7 9 11

Lease-Based (locks/sec) Basic Lease-Based (locks/sec)

Volume 10 Issue 3 @ 2024 IJIRCT | ISSN: 2454-5988

IJIRCT2505045 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 18

3 1300 1500

5 1100 1300

7 950 1150

9 850 1100

11 750 1000

Table 9: Linearizable Read vs Serializable Read - 3

As per Table 9 if the cluster size increases from 3 to 11 nodes, both Linearizable and Serializable read

performance experiences a decline, but Serializable reads maintain higher throughput across all cluster sizes.

At 3 nodes, Linearizable Read QPS is 1300, while Serializable Read QPS is slightly higher at 1500. As the

cluster grows to 5 nodes, Linearizable performance drops to 1100, while Serializable decreases to 1300. By

the time the cluster reaches 7 nodes, Linearizable QPS drops further to 950, with Serializable reading at

1150. At 9 nodes, Linearizable QPS reaches 850, and Serializable performance is 1100. Finally, at 11 nodes,

Linearizable QPS is 750, and Serializable QPS is 1000. The decrease in Linearizable reads is more

pronounced due to the increased Raft consensus overhead, while Serializable reads, which do not require

full consensus, still provide relatively better performance as the cluster size increases.

Graph 9: Linearizable Read vs Serializable Read - 3

Graph 9 shows if the cluster size increases from 3 to 11 nodes, Linearizable Read QPS decreases from 1300

to 750, while Serializable Read QPS drops from 1500 to 1000. Serializable reads consistently outperform

Linearizable reads across all cluster sizes. The decline in performance is more significant for Linearizable

reads due to the Raft consensus overhead, which becomes more pronounced with larger clusters. At 3 nodes,

the difference between Linearizable and Serializable is 200 QPS, but by 11 nodes, the gap narrows to 250

QPS. Despite the narrowing difference, Serializable reads continue to provide higher performance,

especially as the cluster size grows.

EVALUATION

The evaluation of read performance across varying cluster sizes from 3 to 11 nodes shows that both

Linearizable and Serializable reads experience a decline as the cluster size increases. However, Serializable

reads consistently offer better throughput than Linearizable reads at all cluster sizes. At 3 nodes, the

difference is 150 QPS, and by 11 nodes, it grows to 250 QPS. Linearizable reads are more affected due to

the increased Raft consensus overhead, while Serializable reads maintain better performance. As the cluster

grows, both read types face performance degradation, but the gap between them remains consistent.

Serializable reads prove to be a more reliable choice for larger clusters, especially when performance is a

0

200

400

600

800

1000

1200

1400

1600

3 5 7 9 11

Linearizable Read QPS Serializable Read QPS

Volume 10 Issue 3 @ 2024 IJIRCT | ISSN: 2454-5988

IJIRCT2505045 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 19

priority. The results suggest that, despite the drop in performance, Serializable reads remain more efficient

at scale.

CONCLUSION

In conclusion, as the cluster size increases, both Linearizable and Serializable reads experience performance

degradation. However, Serializable reads consistently outperform Linearizable reads due to lower Raft

consensus overhead. Serializable reads are more efficient and reliable, especially for larger clusters.

Therefore, they are a better choice when prioritizing performance at scale.

Future Work: Serializable reads may not guarantee the most up-to-date data, which can be an issue for

applications requiring immediate consistency. Addressing this limitation could be a focus for future work.

REFERENCES

[1] Hwang, S. J., No, J., & Park, S. S. A case study in distributed locking protocol on Linux clusters. In V.

S. Sunderam, G. D. van Albada, P. M. A. Sloot, & J. J. Dongarra (Eds.), Computational Science –

ICCS 2005 (Vol. 3514, pp. 619–626). Springer, 2005.

[2] Desai, N. Scalable hierarchical locking for distributed systems. Journal of Parallel and Distributed

Computing, 64(10), 1157–1167, 2004.

[3] No, J., & Park, S. S. A distributed locking protocol. In J. Zhang, J. H. He, & Y. Fu (Eds.),

Computational and Information Science (Vol. 3314, pp. 262–267). Springer, 2004.

[4] Carvalho, O. S. F., & Roucairol, G. On mutual exclusion in computer networks. Communications of

the ACM, 26(2), 146–147, 1983.

[5] Born, E. Analytical performance modelling of lock management in distributed systems. Distributed

Systems Engineering, 3(1), 68–74, 1996.

[6] Lei, X., Zhao, Y., Chen, S., & Yuan, X. Concurrency control in mobile distributed real-time database

systems. Journal of Parallel and Distributed Computing, 69(10), 866–876, 2009.

[7] "etcd: A Distributed, Reliable Key-Value Store for the Edge" by Corey Olsen et al. (2018).

[8] Hightower, K., Burns, B., & Beda, J. (2017). Kubernetes: Up and Running: Dive into the Future of

Infrastructure. O'Reilly Media. 2017.

[9] Tan, S., & Zhang, X. Managing timeouts and retries in snapshot isolation. Proceedings of the IEEE

Conference on Data Engineering, 130-137, 2017.

[10] Ramesh, D., Gupta, H., Singh, K., & Kumar, C. Hash Based Incremental Optimistic Concurrency

Control Algorithm in Distributed Databases. In Intelligent Distributed Computing (pp. 115–124).

Springer. https://link.springer.com/chapter/10.1007/978-3-319-11227-5_13, 2015.

[11] Adya, A., Howell, J., Theimer, M., & Bolosky, W. J. Cooperative Task Management without Manual

Stack Management. ACM SIGPLAN Notices, 41(6), 289–300.

https://dl.acm.org/doi/10.1145/1134293.1134329 , 2006.

[12] Berenson, H., Bernstein, P. A., Gray, J., Melton, J., & O'Neil, P. E. A Critique of ANSI SQL Isolation

Levels. ACM SIGMOD Record, 24(2), 1–10. https://dl.acm.org/doi/10.1145/568271.223831, 1995.

[13] Gray, J., Reuter, A., & Putzolu, M. Transaction Processing: Concepts and Techniques. Morgan

Kaufmann. ISBN: 978-1558601905, 1992.

https://link.springer.com/chapter/10.1007/978-3-319-11227-5_13
https://dl.acm.org/doi/10.1145/568271.223831

Volume 10 Issue 3 @ 2024 IJIRCT | ISSN: 2454-5988

IJIRCT2505045 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 20

[14] Tannenbaum, T. Dynamic and fixed timeout approaches for database concurrency management.

Proceedings of the International Database Systems Conference, 241-253, 2016.

[15] Xu, F., & Li, C. Concurrency control with fixed and dynamic timeouts in distributed transaction

systems. International Journal of Computer Applications, 124(6), 111-119, 2016.

[16] Zhang, J., & Li, Z. Concurrency control mechanisms for database systems using snapshot isolation.

ACM Computing Surveys, 23(4), 45-58, 2011.

[17] Koçi, A., & Çiço, B. Performance evaluation of the asymmetric distributed lock management in cloud

computing. International Journal of Computer Applications, 180(49), 35–42, 2018.

[18] Abadi, D. J., & Bernstein, P. A. Concurrency control in distributed database systems. IEEE

Transactions on Knowledge and Data Engineering, 20(1), 101-110, 2008.

[19] Badr, M., & Wilke, B. Snapshot isolation in distributed databases: A survey of techniques and

challenges. International Journal of Computer Applications, 140(4), 35-42, 2016.

[20] Gadepally, V., & Kalyanaraman, V. (2017). Kubernetes: A platform for distributed systems

automation. IEEE International Conference on Cloud Engineering (IC2E), 268-273.

https://doi.org/10.1109/IC2E.2017.50 2017.

[21] Barbaro, S., & Leitao, J. Time-based concurrency control for distributed databases. Proceedings of the

IEEE International Conference on Database Systems, 45-56, 2013

