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Abstract 

In order to track the progression of diabetic retinopathy (DR), exudate detection is a crucial task for 

computer-aided diagnosis of DR. This article uses a deep convolutional neural network (CNN) to 

identify exudates at the pixel level. The CNN model is saved as an offline classifier once it has been 

trained using expert-labelled exudate picture patches. Potential exudate candidate sites are first 

retrieved using the morphological ultimate opening approach in order to obtain pixel-level accuracy 

while cutting down on computing time. The trained CNN model is then used to classify and identify 

the local region (64 × 64) around the candidate points. The suggested CNN architecture achieves a 

pixel-wise accuracy of 89.50%, sensitivity of 87.00%, and specificity of 94.23% on the test database. 
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1. Introduction 

In developed nations, diabetic retinopathy (DR) is the primary cause of blindness and visual loss 

in people of working age [1], [2]. For diabetics, early identification and annual screening are essential to 

preventing more visual loss [1]. Automatic DR grading has the potential to reduce the burden of 

ophthalmologists, increase efficiency, and lower the cost of DR screening, especially in light of the 

constantly growing number of diabetes patients [3]–[5].When the blood-retinal barrier breaks down, serum 

proteins, lipids, and proteins can escape from the capillaries, resulting in exudate [2]. It is among the early 

clinical indicators of DR. Consequently, the diagnosis of DR depends on the precise and automated 

identification of exudate. In colour fundus imaging, exudates appear as brilliant white or yellow objects with 

varying contrast and forms. Figure: 1 displays a typical DR image with exudate. 

 

 
Figure: 1 DR color fundus image with exudates presented 

 

Numerous methods have been developed for the broad investigation of automatic exudate 

detection. Exudate detection is usually broken down into three main steps: obtaining exudate candidates, 

feature extraction, and machine learning. For the purpose of extracting the exudate candidates, a number of 
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techniques have been developed. These include morphological operation-based methods, such as [6], [7], 

clustering-based methods, such as [8], [9], and pixel-level feature-based machine learning, such as [10], 

[11].Following the acquisition of exudate candidates, the candidate points are often further classified using 

feature extraction and machine learning. For all of the exudate candidates, Zhang et al. retrieved 28 features, 

including those related to intensity, geometry, and texture. Random forest was then used for classification 

[6]. For the exudate candidates, Garcia et al. collected 18 features, including color and form features, and 

tried various machine learning techniques, such as support vector machines, radial basis functions, and 

multilayer perceptron, for classification [23]. 

In this work, we integrated deep neural networks with image processing procedures to increase 

the pixel-level exudate detection accuracy. The ultimate opening algorithm is used to obtain viable 

candidates. After that, the immediate area around the seed points is taken out and sent to deep convolutional 

neural networks that have been trained for classification. Consequently, accurate exudate detection at the 

pixel level is achieved. 

 

2. Method and Methodology 

Figure 2 shows the general framework for the detection of exudates.The 64 × 64patches taken from 

the illumination-corrected green channel image are used to train theCNN network, and the trained model is 

then saved on the computer.The optic disc and blood vessels are first eliminated from the retinal pictures as 

part of the image processing process.The prospective exudate candidates, or seed points, are then obtained 

using the ultimate opening algorithm. Finally, the trained deep learning model is fed the local patches 

surrounding the seed sites to determine whether or not they are exudates. 

 

 
 

Figure 2 Framework for exudate detection with deep learning 

If all of the pixels inside the fundus image are calculated, it would take a lot of time to apply the 

CNN model to each pixel in order to accomplish pixel-level identification for a pure deep learning approach. 

Thus, the benefit of employing the ultimate opening method is that it will efficiently identify the possible 

target candidate and eliminate the background points. The process will proceed more quickly if the ultimate 

opening reduces the candidate numbers to 1-20% of the entire pixel number in the image, depending on the 

symptoms of the exudate in the fundus image. 
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A. Removal of Optic Disc Detection 

Since exudates and the optic disc are both bright objects with comparable colors in a color fundus 

image, the optic disc must be identified and masked out before the exudates can be recognized effectively. 

The local phase symmetry technique is used to detect optic discs. A dimensionless indicator of the level of 

feature symmetry in the immediate area is the local phase symmetry algorithm [13]. The middle of the optic 

disc responds strongly because it shows on the retinal image as a brilliant circular or elliptic zone. The 

whole optic disc region is then extracted from the highest response of local phase symmetry via region 

growth.The optic disc radius is the smallest circle radius that surrounds the area that is growing. 

 

B. Removal of Retinal Vessels 

Retinal vessels are typically removed by segmenting the vessel and then inpainting it in accordance 

with the segmentation outcome. The fine vessels are difficult to segment and remove, which is a drawback 

of this popular technique. Zhang et al. suggested inpainting the dark structures (vessels, microaneurysms, 

hemorrhages, etc.) by using morphological closure and opening operations, followed by the supremum 

operation [7]. We used this method in our study because it effectively removed tiny black lesions and fine 

arteries while leaving the light lesions intact. The inpainting outcome for the green channel retinal imaging 

displayed in Figure: 3(a) is displayed in Figure: 3(b). 

 
Figure: 3 Removal of tiny black lesions and retinal vessels. (A) The fundus image in green channel 

color; (B) the vessel and little dark lesion eliminated outcome image (b). 

 

C. Ultimate Opening 

The final opening is used to obtain the exudates candidate points following the removal of the retinal 

vasculature and small black lesions. Beucher was the first to propose ultimate opening, a residual operator 

that emphasizes the most contrasted patterns [14], [15]. The maximum residue is chosen as the temporary 

outcome after the image is subjected to a series of opening operations with progressively larger structure 

elements. Until the maximum specified structural element size is attained, this phase is repeated. Figure: 

4(a) displays the final opening result of the image Figure: 3(a). The appropriate threshold inside a specific 

structuring element encircling the local region is determined using the region-based Otsu algorithm; the 

outcome is displayed in Figure: 4(b). 

However, the binary image in Figure: 4(b) does not accurately depict all of the possible exudate 

candidate locations when compared to the original image in Figure: 3(a). While some areas are larger than 

the actual exudates, others are smaller. We then inpaint the slightly dilated binary picture (Figure: 4(b)) on 

the original green channel image to refine the possible candidate result. The difference between the 

inpainted and original images is then obtained, as illustrated in Figure: 4(c). After that, the difference image 

is segmented to produce a more precise exudate candidate image, as seen in Figure: 4(d). 
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Figure: 4 Use the ultimate opening algorithm to get exudate candidate points. (b) segment ultimate 

opening result with local Otsu thresholding; (a) ultimate opening result; (d) the image of possible 

exudate candidates; (c) the difference image, which is produced by subtracting the inpainted image 

from the green channel image; 

 

D. Convolutional Neural Networks 

CNN differs from other conventional machine learning techniques in that it uses training images to 

automatically learn features rather than expertly created features like support vector machines and random 

forests do. Its efficacy in picture recognition and classification has been demonstrated [17], 

[18].Convolutional, pooling, and fully-connected layers are the three primary types of layers that typically 

make up a CNN architecture. A complete CNN architecture is created by stacking the three different kinds 

of layers. 

The size and quantity of the learnable filters in the convolutional layer can be adjusted by the user, 

while the weights are automatically determined and refined throughout the training process. In general, the 

deeper convolutional layers can learn more abstract, or high-level, features, whereas the initial layers will 

learn simpler features, such edges. All of the convolution responses between the input channels with the 

filters are added together, and an element-wise non-linear activation function—a rectified linear unit in this 

study—is then applied to the total to determine the convolutional layer's output. 

To gradually reduce the spatial dimension and further minimize the network's computation time, a 

pooling layer—typically a max-pooling layer—must be added in between each convolutional layer. The 

convolutional layer's most notable response in the local area will be chosen via max-pooling. The stride, or 

downsample ratio, is one of the tunable parameters in the max-pooling parameter; typically, 2 is employed. 

Following a few stacks of max-pooling and convolutional layers, high-level abstract features with 

the appropriate dimensions are retrieved. For final classification, the output from the final max-pooling layer 

is subsequently sent to the fully linked layer. Essentially, a fully connected layer is a conventional multi-

layer perceptron with an output layer that employs a softmax activation function. Using the high-level 

characteristics produced by earlier layers, the fully connected layer's goal is to categorize the input image 

into different groups according to the training dataset. A dropout layer is included between the fully-
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connected layers to regularize the network and prevent over-fitting. During training, the dropout layer will 

randomly remove neurons and their connections, preventing neurons from over-co-adapting. 

 

No. Layer Type Maps Size KerSize 

0 Input Layer 1 64 × 64 --- 

1 Convolutional 32 62 × 62 3 × 3 

2 Convolutional 32 60 × 60 3 × 3 

3 MaxPool 32 30 × 30 2 × 2 

4 Convolutional 64 28 × 28 3 × 3 

5 Convolutional 64 26 × 26 3 × 3 

6 MaxPool 64 13 × 13 2 × 2 

7 Convolutional 96 11 × 11 3 × 3 

8 Convolutional 96 9 × 9 3 × 3 

9 MaxPool 96 4 × 4 2 × 2 

10 Convolutional 128 2 × 2 3 × 3 

11 MaxPool 128 1 × 1 2 × 2 

12 Fully-Connected 64 Neurons 

13 DropOut 64 Neurons 

14 Fully-Connected 64 Neurons 

 Output Layer 2 Neurons 

 

Table 1 CNN Architecture 

 

Table I provides the CNN network architecture. 64×64 patches taken from the illumination-corrected 

green channel image are fed into the network. The CNN model is trained independently using illumination-

corrected green channel images and expert annotations. The CNN training method uses only a few image 

processing algorithms, with the exception of lighting correction, which eliminates brightness variance. The 

CNN model will be stored as a classifier for subsequent use once it has been appropriately trained. 

 

3. Result 

E-Ophtha EX, a recently released open-source database for exudate segmentation with pixel-level 

annotations by two experts [7], was the database used in this study. The total number of photographs in E-

Optha Ex is 82, comprising 35 normal photos and 47 exudate images. Every photograph, which ranges in 

size from 1440 960 pixels to 2544 1696 pixels, was taken with a field of view of 45. The image sizes in this 

study are normalized to have a disc radius of 70 pixels, which yields an image dimension of about 1200 800, 

in order to standardize the processing settings. 

We retrieved all of the positive expert-labeled annotations from the 32 randomly chosen training 

photos—roughly 70% of the 47 exudate images in the database—for the CNN network's training. A random 

selection of 30% of the training data is set aside for the performance test. The pixels with no exudates are 

chosen at random to form the negative patches. The number of negative examples chosen is equal to the 

number of positive samples in order to maintain the balance between the two classes.A total of 249,448 

patches—122,036 positive patches and 127,412 negative patches—are used to train and validate the CNN 

network. A total of 114,922 patches from 15 exudate photos make up the test set, which includes 65,510 

positive patches and 49,412 negative patches. We train the CNN model using the Theano, Lasagne, and 

Nolearn deep learning libraries. 150 epochs have been used to train the network. 
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 Training Set (%) Test Set (%) 

Accuracy 95.3% 89.50% 

Sensitivity 93.08% 87.00% 

Specificity 96.32% 94.23% 

F-Score 95.36% 91.38% 

Table 2 performance of the proposed CNN architecture. 

 

The performance of the suggested CNN architecture on training and test databases is shown in Table 

II. On the test set, an accuracy of 89.50% is attained. In contrast, Zhang et al. used the random forest method 

on the same dataset at the pixel level and obtained a sensitivity of 74% and a positive predictive value of 

72%. Even if the contrast and image quality may differ, the accuracy on the test set shows that the trained 

CNN model has strong generalization ability given that the training and test datasets are randomly split at 

the image level. 

 
Figure: 5 Exudate identification using the suggested method. (a), the original image with exudate; (b), 

exudate identified by the algorithm is marked in green. 

 

For the image on Figure: 5(a), Figure: 5(b) provides an example of the identification result using the 

suggested approach. It can detect the exudate down to the pixel level. 

 

4. Conclusion 

In this work, we suggested a deep learning-based approach for pixel-level exudate identification. 

After using morphological ultimate opening approaches to extract a collection of exudate candidates, the 

candidate points are sent to CNN deep networks that have been trained for classification. For both the test 

and training sets, the method's pixel-by-pixel accuracy was high. 

Testing the approach on more publicly accessible databases, such as the IRDRand DIARETDB 

databases, will be part of future study. Furthermore, because of the nature of deep learning and machine 

learning, increasing the quantity and variety of training data will typically result in better model 

performance. More exudate photos, like the manual labelling offered by DIARETDB1, could be included to 

the training set in the future. 
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