
Volume 11 Issue 3                                                       @ 2025 IJIRCT | ISSN: 2454-5988 
 

IJIRCT2505006 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 1 
 

Deep Reinforcement Learning for 

Autonomous Vehicles 

Srinivasa Kalyan Vangibhurathachhi 

Srinivasa.Kalyan2627@gmail.com 

 

Abstract 

This study investigates the application of Deep Reinforcement Learning (DRL) in enhancing the 

performance and decision-making capabilities of Autonomous Vehicles (AVs). By leveraging DRL 

techniques such as Deep Q-Networks (DQN), Proximal Policy Optimization (PPO), and 

Asynchronous Advantage Actor-Critic (A3C), AVs can learn to make intelligent, real-time decisions 

in dynamic environments. The paper uses a comparative analysis of these DRL algorithms to evaluate 

their effectiveness in path planning, lane-keeping, and obstacle avoidance tasks. Key challenges 

encountered in deploying DRL in AVs include scalability, safety, real-time decision-making, and the 

sim-to-real transfer of models. The study also highlights the role of simulation platforms like CARLA 

and OpenAI Gym in training DRL models and discusses their impact on model reliability and real-

world performance. The findings suggest that while DRL shows great promise for improving AV 

capabilities, challenges remain in its practical application, particularly regarding the safety and 

ethical implications of decision-making in critical driving situations. Future research directions 

include enhancing simulation environments, reward function design, and developing robust safety 

protocols to ensure the safe deployment of DRL-powered AVs in real-world scenarios. 
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1. Introduction 

1.1 Background on Autonomous Vehicles 

Autonomous vehicles (AVs) are transforming transportation, promising improvements in road safety, traffic 

efficiency, and mobility. Operating without human intervention, AVs use sensors, machine learning, and 

artificial intelligence (AI) to navigate their environment (Soori et al., 2023). The development of AV 

technology has been rapidly advancing, driven by major companies like Tesla, Google (Waymo), and Uber. 

AVs have the potential to significantly reduce traffic accidents caused by human error, which accounts for 

over 90% of incidents (Soori et al., 2023). They can also reduce traffic congestion, improve energy 

efficiency, and increase mobility for those unable to drive, such as the elderly or disabled. However, 

challenges remain, particularly in ensuring AV safety in dynamic, unpredictable environments. AVs must 

make real-time decisions based on numerous factors, including traffic conditions and human behaviors (Xie 

et al., 2025). Moreover, integrating AVs into existing road systems poses regulatory, ethical, and 

infrastructural challenges. This is where AI, particularly reinforcement learning, becomes critical in AV 

development. 

Deep Reinforcement Learning (DRL) is a machine learning method that combines deep learning with 

reinforcement learning. DRL enables an agent to learn optimal decision-making through trial and error, 

using feedback from its environment (Chen, 2022). In AVs, DRL allows the vehicle to improve its driving 

policies over time by interacting with various driving conditions (Zhu & Zhao, 2021). It is particularly 
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advantageous in complex environments, as it can adapt and refine its decision-making without explicit 

human programming. Unlike traditional rule-based systems, DRL can adjust to unforeseen scenarios, 

making it highly suitable for real-time decision-making in driving (Tian et al., 2025). DRL's importance in 

AVs lies in its ability to handle dynamic environments and enable real-time responses to changing traffic 

conditions (Antonio & Maria-Dolores, 2022). While traditional methods struggle in such environments, 

DRL allows AVs to continuously learn and improve from their experiences, making it a more scalable and 

adaptable approach to autonomous driving. DRL’s ability to improve over time without requiring manual 

updates positions it as a cornerstone for AV development, enabling them to navigate the unpredictable 

nature of real-world driving. 

 

1.2 Problem statement 

Autonomous vehicle (AV) control faces significant challenges due to the complexity of real-world 

environments. AVs must navigate dynamic conditions, such as varying traffic patterns, unpredictable 

behaviour from pedestrians, and interactions with other vehicles (Rezwana & Lownes, 2024). Additionally, 

diverse road users, such as cyclists and motorcyclists, further complicate decision-making (Useche et al., 

2025). These complexities require AVs to make split-second decisions in a constantly changing 

environment, making it crucial for their control systems to respond effectively and in real-time. 

Traditional approaches, such as rule-based systems and supervised learning, fall short in these dynamic 

environments. Rule-based systems are limited by predefined actions and fail to account for the 

unpredictability of real-world scenarios (Varshney & Torra, 2023). Supervised learning systems require 

large amounts of labelled data and often struggle to generalise to new situations, leaving gaps in the AV’s 

ability to handle edge cases (Sarker, 2021). These methods lack the flexibility and adaptability needed for 

real-time, complex decision-making. Deep Reinforcement Learning (DRL) offers a solution by enabling 

AVs to learn and adapt based on their experiences continuously. DRL allows AVs to improve decision-

making over time, optimise their responses to real-world challenges, and ensure they can navigate complex 

environments more efficiently and safely. 

 

1.3 Research Objectives and Contributions 

This paper explores the use of Deep Reinforcement Learning in autonomous vehicles, aiming to: 

• Review the state-of-the-art DRL algorithms applied to autonomous driving tasks. 

• Identify the key challenges in applying DRL to AVs and suggest potential solutions. 

• Discuss the real-world implications of using DRL in AVs, including safety, ethical concerns, and 

regulatory challenges. 

This paper contributes to the growing body of knowledge on intelligent systems for transportation by 

synthesizing current research and offering new insights into the application of DRL in autonomous driving. 

 

2. Literature Review 

2.1 Existing Techniques in Autonomous Driving 

Haque et al. (2022) observe that early autonomous driving systems relied on rule-based approaches and 

supervised learning models. Varshney and Torra (2023) state that rule-based systems function by 

implementing predefined instructions for specific tasks, such as lane-keeping and obstacle avoidance. 

However, these systems struggled with real-world variability and could not adapt to unforeseen 

circumstances, making them less reliable in dynamic environments (Bellone et al., 2021). Supervised 

learning approaches also faced limitations, as they required vast amounts of labeled data for training, which 
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could not cover all possible driving scenarios (Chib & Singh, 2023). Furthermore, these models often 

struggled with generalization, meaning they would fail when presented with novel, real-world situations 

(Bellone et al., 2021). As the complexity of driving scenarios grew, these early systems became inadequate, 

leading to the exploration of more flexible learning methods such as Deep Reinforcement Learning (DRL), 

which provides greater adaptability and scalability. 

 

2.2 State-of-the-Art DRL for Autonomous Vehicles 

Recent advancements in autonomous driving have seen the integration of Deep Reinforcement Learning 

(DRL) algorithms, such as Deep Q-Networks (DQN), Proximal Policy Optimization (PPO), and 

Asynchronous Advantage Actor-Critic (A3C) (Kiran et al., 2021). These DRL algorithms have proven to be 

effective in enabling AVs to navigate complex and dynamic environments. DQN, for instance, uses a deep 

neural network to approximate action-value functions and has been successfully applied in tasks like lane-

changing maneuvers (Guo & Harmati, 2024). The algorithm works by associating rewards with specific 

actions and refining the model through iterative trials. PPO, an on-policy method, focuses on policy 

optimization by ensuring stability through a clipped objective function (Markowitz & Staley, 2023). This 

makes it well-suited for continuous decision-making tasks in urban environments. A3C, using parallel 

agent-based learning, enables quicker training through multi-agent systems and is especially useful in multi-

agent environments like traffic intersections (Hua et al., 2023). These algorithms have already demonstrated 

real-world applications, with DQN being applied in lane-keeping tasks, PPO for urban driving scenarios, 

and A3C for resource allocation in intersections. They have outperformed earlier methods in terms of 

adaptability and real-time decision-making, demonstrating DRL's potential for improving AV control 

systems. 

 

2.3 Challenges in DRL for Autonomous Vehicles  

Real-world applications of DRL experience multiple difficulties because implementing the method in 

autonomous driving systems proves challenging. The main issue regarding DRL implementation involves 

its data requirements and computational power needs that prove problematic for real-time deployment 

(Kiran et al., 2021). The safety of DRL agents depends heavily on proper rewards function design because 

inadequate planning might result in unsafe behavioral learning. An example of such a system would be a 

framework allowing increased efficiency at the cost of reduced safety when making driving decisions. 

Another hurdle is real-time decision-making. DRL models demonstrate slow convergence during training in 

complex scenarios thus extending the delay in which the AV can generate fast critical driving actions (Zhu 

& Zhao, 2021). The inability for simulation-trained models to function optimally in genuine operational 

settings arises from their incapability to handle real-life conditions which include weather elements together 

with variabilities in road foundations and unpredictable human movements (Zhu & Zhao, 2021). 

The application of handle sim-to-real situations poses difficulties which researchers are continuously trying 

to overcome. The differences between simulated and real-world settings cause problems when trying to use 

DRL-based models in uncontrolled dynamic situations unless major retraining occurs. The implementation 

of Deep Reinforcement Learning (DRL) in autonomous vehicles faces crucial obstacles presented in Figure 

1 that combine resource requirements with data needs under safety issues and gradual real-time decision-

making speed while also requiring adaptation from simulated to actual conditions and complex environment 

translation. DRL implementation in AV requires successful resolution of these critical obstacles. 
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Figure 1: Deep reinforcement learning (DRL) for self-driving cars (Source: Gupta et al., 2020) 

 

3. Proposed Solutions and Approaches 

3.1 DRL Algorithms for Autonomous Vehicles 

Deep Reinforcement Learning (DRL) algorithms are critical for training autonomous vehicles (AVs) to 

navigate complex environments and make real-time decisions (Bondre et al., 2024). Among the most 

commonly used DRL algorithms are Deep Q-Networks (DQN), Proximal Policy Optimization (PPO), and 

Asynchronous Advantage Actor-Critic (A3C). DQN, introduced by Mnih and colleagues in 2015, is 

effective in tasks requiring discrete decisions, such as lane-keeping and path following (Kiran et al., 2021). 

DQN uses a deep neural network to approximate action-value functions, which allows the AV to learn 

optimal driving strategies by trial and error in a simulated environment (Tammewar et al., 2023). 

The on-policy method PPO presented by Schulman et al. (2017) maintains stability and reliability in 

continuous action spaces through which it controls the acceleration and steering actions of AV control (Guo 

et al., 2024). The method optimizes the policy through direct updates, which guarantee safe behavior 

changes. Mnih et al. (2016) established A3C, which deploys multiple agents simultaneously to explore the 

environment while speeding up the learning process according to Liu et al. (2024). A3C brings significant 

benefits for managing environments containing multiple agents, including complex traffic situations with 

interacting vehicles, because it enhances decision-making speed in constantly changing conditions (Hua et 

al., 2023). Such DRL algorithms provide vehicles with capabilities to generate better driving decisions 

through efficient responses to unpredictable and complicated road situations. Table 1 illustrates structural 

and operational differences between DQN and A3C methods by using the comparison table format. The 

distinctions between DQN and A3C contribute to understanding different approaches within the DRL 

algorithms used for AVs even though PPO is not explicitly mentioned. 
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Table 1: Comparison of DQN with A3C algorithm (Source: Bi et al., 2023) 

 

3.2 Environment Modelling (140 words) 

The training of Autonomous Vehicle agents depends on simulation platforms CARLA as well as OpenAI 

Gym because these platforms supply protected test environments that let DRL models train without 

endangering actual driving experience. Providing urban-specific high fidelity simulations is CARLA while 

it delivers realistic conditions of roads and weather patterns as well as traffic systems (Malik et al., 2022). 

The simulation software lets autonomous vehicles practice advanced driving maneuvers which include lane-

switching alongside parking functions and human-vehicle encounters (Zhang et al., 2024). The agents learn 

diverse scenarios through DRL modeling that enables safe deployment before operational use. 

Reinforcement learning algorithms get tested through Openai Gym which provides a general platform 

despite not having built-in auto vehicle capabilities (Towers et al., 2024). The platform provides simulation 

environments which enable AV decision-making strategy assessments in basic circumstances ahead of their 

implementation within complex simulation systems. 

The AV training process is boosted by realistic simulation environments such as CARLA and OpenAI Gym 

because these systems create safe environments for testing at scale across various situations (Zhang et al., 

2024). The CARLA simulator's system design is depicted in Figure 2 which illustrates how components 

between the virtual environment and agent along with the control system operate. Through this architecture 

the agent connects its sensors and actuators to ensure dynamic training situations within the simulation 

environment. Environmental development and testing of Deep Reinforcement Learning (DRL) models relies 

on this basic architectural structure to operate in a safe controlled space without risks. 

 

 
 

Figure 2: CARLA architecture for autonomous vehicle simulation (Terapaptommakol et al., 2022) 
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3.3 Reward Design  

Constructing suitable reward functions stands essential because they drive DRL agents to execute 

appropriate behaviors. The reward system in autonomous vehicles requires equilibrium between safety 

elements and operational effectiveness as well as passenger comfort to guide proper vehicle decision-

making (Chen et al., 2023). Inspection rewards of automated vehicles depend on penalizing dangerous 

behavior as well as encouraging actions that prevent collisions according to Abouelazm et al. (2024). An 

AV system receives improved rewards when it maintains proper distance between vehicles along with 

respecting traffic standards. The reward system under efficiency gives benefits for minimizing fuel usage 

and establishing normal driving speed and these incentives apply more to highway and lengthy distances 

(Zhang et al., 2023). The system gives rewards for gentle vehicle speed transitions which leads to decreased 

vehicle breakdowns (Karacalı et al., 2023). AVs receive rewards through their system when they steer 

smoothly between lanes since passenger comfort factors into the evaluation. 

Through reward systems AVs enhance their operations progressively as they receive environmental 

feedback to optimize their decision processes. The reward functions utilized in CARLA enable autonomous 

vehicles to gain rewards through effective route navigation as they prevent crashes and respect traffic speed 

limits (Chen et al., 2024). The structural method to create reward functions for autonomous vehicles is 

illustrated in Figure 3. The system establishes methods to evaluate driving performance including 

environmental variables in order to determine reward or penalty scores. Through the logic diagram users can 

comprehend how safety elements along with efficiency and comfort are measured to form the reward system 

which drives the DRL agent to discover optimal driving protocols. 

 
Figure 3: Logic diagram of reward function (Source; Lin et al., 2022) 
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4. Impact and Use Cases 

4.1 Real-World Applications  

Deep Reinforcement Learning (DRL) has revolutionised autonomous vehicles (AVS), enhancing their 

ability to navigate complex environments and make decisions in real-time. Path planning benefits 

significantly from DRL applications because AVs can use DRL algorithms to identify optimal routes 

through the evaluation of present traffic situations and street obstacles and possible threats (Reda et al., 

2024). Through DRL AVs achieve enhanced navigation policy development by processing their past 

experiences according to Mackay et al. (2022). The application of DRL extends to impede maintenance 

operations in vehicles. AVs require the ability to navigate within their designated lanes as they handle 

environmental elements including additional traffic vehicles and road curve conditions (Guo et al., 2024). 

The deployment of DRL systems allows AVS to develop proper steering behaviors that efficiently prevent 

drift while creating secure lane changes (Lv et al., 2022). 

Obstacle avoidance stands as the most fundamental element of autonomous driving because unpredictability 

exists in dynamic road environments (Aizat et al., 2023). Through DRL algorithms autonomous vehicles 

become capable of detecting pedestrians alongside other vehicles together with unexpected obstacles so they 

can perform real-time accident prevention decisions (Chen et al., 2024). Cars operating in urban zones and 

driving on highways both require these essential tasks because city roads present congested traffic and 

numerous pedestrian intersections and highway roads maintain slower speeds yet necessitate critical yet 

simple decision-making processes. DRL demonstrates effective performance in practical applications for 

automated vehicles according to real-world data. The Full Self-Driving (FSD) system from Tesla makes use 

of DRL technology for urban and highway navigation through which it both shapes optimal routes and 

detects intersections (Hu et al., 2025). DRL plays a vital role at Waymo and Uber ATG to enhance both 

urban path planning and vehicle coordination for improved automation in AV operations. 

 

4.2 Safety, Efficiency, and Ethical Considerations 

The inclusion of DRL within autonomous vehicles triggered substantial improvements of their performance 

capabilities alongside safety enhancements. DRL-based automated vehicles learn from their environment to 

handle immediate changes along with unknown events like unexpected braking or pedestrian crossings as 

described in Chen et al. (2024). The fast capability for making well-informed choices through DRL reduces 

the occurrence of accidents. Current research indicates that AVs implement DRL technology surpass 

traditional cars because they offer more efficient collision prevention and emergency emergency braking 

capabilities (Muzahid et al., 2022). The efficiency of driving behavior improves through DRL algorithms 

because they help minimize fuel expenses and enhance traffic management. The DRL-trained AVs modify 

their speed to achieve maximum efficiency while preventing traffic congestion while reducing fuel usage 

during extended journeys according to Du et al. (2022). The process of decision-making brings up moral 

questions specifically in situations where clear solutions are not obvious. The DRL system encounters 

ethical quandaries when forced to pick between committing two negative actions with the example of 

preventing one pedestrian while endangering another pedestrian (Everett et al., 2021). The decision-making 

challenges presented by "trolley problems" create substantial ethical issues for AV systems since they 

conflict with determining how algorithms should handle lethal circumstances (Poszler et al., 2023).  

 

5. Conclusion 

DRL has transformed the development of AVs through its enhancement of vehicle capabilities for 

conducting sophisticated computations during live operations. DRL controls autonomous vehicles through 

DQN, PPO, and A3C algorithms, which enable vehicles to change in dynamic environments and enhance 

their abilities for path planning and obstacle avoidance while keeping steady on lanes. By improving itself 
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through environmental interactions, AVS achieves both safety and operational efficiency for new and 

unpredictable real-life situations, thus paving the way toward future transportation transformation. Many 

obstacles hinder the implementation of DRL in AVS because of problems with scalability, alongside real-

time choice generation and effective transitions to actual highway environments. The proposed 

improvements to simulation environments and reward functions have shown progress but require additional 

development. Critical ethical matters need attention when making decisions about autonomous vehicle 

behaviors in complicated moral situations.  

Additional research needs to be conducted to solve the unresolved issues that DRL presents for AV 

operations. Future development of DRL requires improvements in its scalability alongside enhancements in 

simulation-to-reality translation and ethical frameworks that determine decision processes. AV 

transportation systems improved through DRL integration will create safer ways to transport people that are 

faster and easier to access by all members of society. 
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