
Volume 11 Issue 3 @ 2025 IJIRCT | ISSN: 2454-5988

IJIRCT2505005 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 1

Redesigning Technical Interviews in an AI-Driven

Development Landscape

Aishwarya Babu

babu.aishwarya@gmail.com

Abstract

As artificial intelligence (AI) tools become integrated into mainstream software development, the

foundational competencies required of software engineers are evolving. However, technical interview

methodologies haven’t changed, emphasizing algorithmic problem solving. This paper argues that the

shift toward AI-augmented software engineering necessitates a re-evaluation of how engineers are

assessed during hiring. We propose a new framework for technical interviews that emphasizes

prompt engineering, AI-assisted prototyping and the ability to critically assess AI-generated solutions

over traditional code-from-scratch problem solving. We further discuss implementation strategies

and implications for hiring practices as AI continues to reshape the software engineering landscape.

Keywords: Interview, Hiring, Software Development, Artificial Intelligence, Problem Solving,

Competency

1. Introduction

The rapid adoption of large language models (LLMs) such as OpenAI’s GPT-4 and coding assistants like

GitHub Copilot is changing not only how software is written, but also what it means to be a software

engineer. Today’s engineers increasingly rely on AI systems for code generation, debugging,

documentation, and even architectural recommendations. As a result, the competencies required for success

now extend beyond algorithmic expertise and syntactic fluency to include skills in AI collaboration, prompt

engineering [1], and critical evaluation of AI-generated output.

Despite this shift, most technical interviews remain largely unchanged. They continue to emphasize

competitive programming challenges such as algorithmic puzzles and data structure problems (e.g.

LeetCode-style problems). This is already a misalignment between professional software development and

the criteria used to evaluate candidates [2]. As AI tools become mainstream, this disconnect is likely to

widen, rendering the current interview practices not only outdated, but increasingly irrelevant to the

competencies engineers must demonstrate on the job [3]. These limitations highlight the need to reevaluate

how engineering potential is assessed.

This paper examines the need for new interview paradigms aligned with the AI-augmented development

process and proposes a model that emphasizes evaluating prompt engineering, AI fluency, and critical

evaluation of AI-generated output as core components of the software engineer’s skill set.

2. Proposed Interview Model using AI-Native Evaluation

We propose a new interview model that integrates AI as both a tool and a subject of evaluation. This model

comprises three interrelated competencies:

Volume 11 Issue 3 @ 2025 IJIRCT | ISSN: 2454-5988

IJIRCT2505005 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 2

2.1 Prompt Engineering

Candidates will be evaluated on their ability to craft effective prompts and iteratively refine them to solve

open-ended programming or architectural problems using an AI assistant. The key distinction here is not

just using AI, but also guiding it to produce efficient, accurate, and relevant output [4]. For example, a weak

prompt such as "Write a Python script to sort data" may result in a basic, inefficient solution, whereas a

well-crafted prompt like "Write a Python script to efficiently sort large datasets using merge sort and

optimize memory usage" leads to more specific and actionable results. This skill is essential as software

engineering increasingly moves from code-writing to code-curation.

2.2 Rapid Prototyping

Instead of focusing on isolated algorithmic challenges, candidates will build complete prototypes such as,

micro-services, web applications, or automation scripts, using AI tools. This mirrors real-world workflows

and assesses the candidate’s ability to integrate multiple services, libraries, and systems into cohesive

solutions. Candidates might be tasked with integrating third-party APIs, using version control systems like

Git, and implementing error handling—all while collaborating with AI systems to generate parts of the

application. This shift tests their ability to leverage AI not just as a code generator but as a part of a larger

development ecosystem.

2.3 AI Judgment and Quality Assessment

A critical component of the new model is evaluating AI-generated code. Candidates will be presented with

AI-produced solutions of varying quality and asked to debug, refactor, or optimize the code. This tests their

ability to assess AI’s design choices and their judgment in refining its output. For example, an AI assistant

may generate code that works but has room to be optimized for readability, performance, or scalability.

Candidates should demonstrate their understanding of when to trust the AI’s output and when to intervene.

This will more closely reflect the evolving role of engineers in the software development process when

collaborating with AI.

3. Conducting and Evaluating AI-Native Interviews

To ensure a consistent and fair evaluation of candidates’ abilities, we propose the use of a standardized AI

sandbox as an interview platform where candidates can interact with the same AI model under controlled

conditions. This environment would simulate the tools and workflows engineers would typically use,

allowing interviewers to assess not only the final solutions but also the thought processes and decision-

making steps taken by candidates. All prompts, AI responses, and candidate revisions would be logged for

post-interview review, offering interviewers insights into how candidates engage with AI systems.

The interview could take two forms:

● Live AI Interviews: Candidates perform tasks with AI tools in real-time during a video or in-person

interview. This format allows interviewers to observe how candidates approach problem-solving,

refine their prompts, and collaborate with AI tools in real-time.

● Take-home AI Assignments: Candidates are given a project to complete asynchronously which

might entail interacting with AI tools and providing detailed logs of their interactions. This method

tests how candidates perform in a more flexible environment, mirroring typical work conditions

where they have the freedom to refine their solutions at their own pace.

Volume 11 Issue 3 @ 2025 IJIRCT | ISSN: 2454-5988

IJIRCT2505005 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 3

Evaluation rubrics would assess the following:

● Clarity of Prompts, AI Collaboration and Refinement: How effectively the candidate formulates

prompts to guide AI, critically engage with the output, debug, and improve the generated code.

● Originality and Accuracy of Solutions: The correctness of AI-generated output; and relevance or

creativity for more open-ended problem statements.

This model allows interviewers to evaluate both the candidate’s technical skills and their ability to leverage

AI tools effectively. It also emphasizes the candidate’s knowledge by testing how well they can guide,

critique, and refine AI-generated solutions, which requires a deep understanding of core concepts. The

integration of AI in the interview process doesn't replace the need for strong technical knowledge; instead, it

complements it by focusing on how candidates apply that knowledge in the real-world.

4. Conclusion

Critics may argue that integrating AI into interviews diminishes the importance of individual problem-

solving. However, this view overlooks the evolving nature of software engineering, which is increasingly

focused on collaboration with advanced tools like AI. Just as integrated development environments (IDEs),

version control systems, and continuous integration pipelines reshaped development practices, AI is now

playing a pivotal role in transforming software development. These tools are no longer auxiliary but integral

collaborators that enhance engineers' productivity, creativity, and problem-solving abilities.

In this context, evaluating candidates' ability to collaborate with AI is as important as assessing traditional

coding skills. AI fluency will no longer be a “nice-to-have” skill but a core competency that enables

engineers to work more efficiently, solve complex problems, and deliver high-quality software. The focus of

technical interviews must adapt to reflect this shift, moving beyond the traditional algorithmic problem-

solving model to include competencies like prompt engineering, AI-assisted prototyping, and critical

evaluation of AI-generated solutions.

Rather than resisting this shift, hiring processes must adapt. Engineers today are tasked with guiding and

refining AI-generated solutions, not merely writing code from scratch. Interviews that evaluate candidates'

proficiency with these tools offer a more accurate reflection of their potential in a modern development

environment. By adopting such an approach, organizations ensure they are hiring engineers who can thrive

in an AI-driven development landscape.

References

[1] I. D. Fagadau, L. Mariani, D. Micucci, and O. Riganelli, "Analyzing Prompt Influence on Automated

Method Generation: An Empirical Study with Copilot," arXiv preprint arXiv:2402.08430, Feb. 2024.

[Online]. Available: https://arxiv.org/abs/2402.08430

[2] M. Behroozi, A. Parnin, and T. Barik, "Hiring is Broken: What Do Developers Say About Technical

Interviews?," in 2019 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC),

Oct. 2019, pp. 1-9, doi: 10.1109/VLHCC.2019.8818836.

[3] M. Behroozi, S. Shirolkar, T. Barik, and C. Parnin, "Does Stress Impact Technical Interview

Performance?," in Proceedings of the 28th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2020), Nov. 2020, pp.

999–1010, doi: 10.1145/3368089.3409712.

[4] J. White, Q. Fu, S. Hays, M. Sandborn, C. Olea, H. Gilbert, A. Elnashar, J. Spencer-Smith, and D. R.

Schmidt, "A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT," arXiv preprint

arXiv:2302.11382, Feb. 2023. [Online]. Available: https://arxiv.org/abs/2302.11382

https://arxiv.org/abs/2402.08430
https://arxiv.org/abs/2302.11382
https://arxiv.org/abs/2302.11382

