
Volume 6 Issue 5 @ 2020 IJIRCT | ISSN: 2454-5988

IJIRCT2504033 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 1

Reducing Computational Overhead in Network

Graph Partitioning

Srinivasa Reddy Kummetha

srini.kummetha@gmail.com

Abstract

A graph is a conceptual framework consisting of a set of points, commonly called nodes or vertices,

interconnected by lines, referred to as edges or links. Each edge serves as a bridge between two

vertices, signifying an association or interaction between them. Graphs can be classified based on the

nature of their vertices and edges. A directed graph, or digraph, features edges with a specific

orientation, indicating movement from one vertex to another. Conversely, an undirected graph lacks

directional edges, implying a mutual connection between linked vertices. In a weighted graph, edges

are assigned numerical values, typically representing factors such as distance, expense, or capacity,

whereas unweighted graphs solely depict connectivity without additional numerical attributes. Graph

coloring is a strategy where distinct identifiers, often represented as colors, are assigned to vertices or

edges under specific constraints. The fundamental goal of this approach is to ensure that adjacent

elements do not share the same identifier. This technique is widely applied to practical problems,

including resource allocation, conflict resolution, and organizational planning. For instance, it is used

in designing schedules where overlapping assignments must be avoided, frequency allocation in

wireless networks to minimize interference, and even in solving logic puzzles like Sudoku. The

chromatic number of a graph represents the least number of colors required to achieve a valid

coloring. Depending on its structure, a graph might require only two colors (rendering it bipartite) or

more. A commonly used method for graph coloring is the greedy algorithm, which assigns colors

sequentially by selecting the smallest available color that has not yet been used for neighboring

vertices. While this approach provides a straightforward and fast solution, it does not always yield

the minimum number of colors required. Finding the most efficient coloring scheme, known as the

minimum chromatic number, is a computationally complex problem categorized as NP-complete,

meaning it becomes increasingly challenging for larger graphs. Despite this difficulty, graph coloring

has significant applications in numerous domains. In programming, it helps with register allocation

in compilers to optimize CPU efficiency. In telecommunications, it aids in preventing signal

interference by assigning appropriate frequencies. Additionally, it plays a crucial role in logistics,

ensuring that tasks and resources are scheduled efficiently without conflicts. This paper addresses the

huge time complexity issue while resolving conflicts using the Hybrid Graph Partitioning.

Keywords: Graph, Node, Connection, Directed Graph, Undirected Graph, Weighted Graph,

Unweighted Graph, Bipartite Graph, Tree, Subgraph, Isomorphism, Chromatic Value, Graph

Coloring

INTRODUCTION

Graph theory is a mathematical discipline that examines the connections and associations among elements,

depicted as nodes (or vertices) and links (or edges). A graph is composed of vertices and edges, where

Volume 6 Issue 5 @ 2020 IJIRCT | ISSN: 2454-5988

IJIRCT2504033 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 2

each edge establishes a link between two vertices, demonstrating an association between them. Graphs can

be directional [1], where edges indicate a specific flow from one vertex to another, or non-directional,

where edges signify mutual relationships. They can also be weighted, where edges hold numerical values,

or unweighted, where all edges are treated equally. Graph theory is instrumental in representing and

solving problems related to computer networks, social structures, and transportation routes. It includes

structures like bipartite graphs, in which nodes are split into two groups with connections only between

them, and trees, which are connected graphs devoid of cycles. A key aspect of graph theory is graph

coloring, where different colors are assigned to nodes to ensure that adjacent nodes do not share the same

color, aiding in scheduling, frequency distribution, and game-solving. Methods such as Breadth-First

Search (BFS) and Depth-First Search (DFS) [2] are crucial for traversing graphs and tackling challenges

like identifying the shortest route between nodes. Graph connectivity determines whether any two nodes

can be linked, while properties like cliques, cycles, and paths describe specific structures within graphs. A

spanning tree is a subset of a graph that connects all its nodes using the least number of edges. Eulerian

and Hamiltonian paths [3] represent unique graph routes that traverse each edge or vertex exactly once.

Various graph algorithms, including Dijkstra’s shortest path algorithm and Kruskal’s minimum spanning

tree algorithm [4], play a fundamental role in this domain. Graph theory finds extensive applications in

computer science, optimization, network infrastructure, and social network analysis. As real-world

networks become more intricate, advanced topics such as maximum flow, graph partitioning [5], and

graph isomorphism remain crucial in addressing complex computational problems.

LITERATURE REVIEW

Graph theory is a mathematical study that examines associations among elements using points (or vertices)

and links (or edges). Each link joins two points, representing an interaction between them. A directional

graph (or digraph) has edges that specify movement between points, whereas a non-directional graph has

edges without a set direction, indicating mutual associations. Value-based graphs [6] assign a specific

measurement to each link, reflecting factors like cost or distance, while non-value-based graphs [7] treat all

links as uniform. A two-partite graph divides vertices into two separate groups where links only exist

between the sets, often used to depict relationships between different categories. A tree is a unified graph

without loops, creating a structured hierarchy. A minor graph consists of a subset of points and links within

a larger graph. Structural equivalence in graphs means two different representations share the same

configuration, maintaining a one-to-one relationship between their elements. The minimum coloring

requirement [8] of a graph defines the smallest number of colors needed to ensure adjacent vertices are

distinctly colored. Assigning colors to vertices follows this principle, with applications in organization and

pattern recognition. A simple coloring method [9] assigns colors sequentially, selecting the lowest unused

color that doesn’t conflict with linked vertices.

Flat graphs can be arranged in a plane without overlapping links, making them useful for cartographic and

visual representation challenges. A complete traversal of all links in a graph occurs in an Eulerian path,

while a Hamiltonian path visits every point once. The ability of a graph to maintain connectedness relates to

whether all points can be reached through available paths. A strongly connected segment in a graph consists

of vertices where every point has a route to another. A subset where every vertex is linked directly is called

a clique. A closed traversal forming a loop is known as a cycle, while a linear connection between points

without repetition is a path. A segmentation process separates vertices into two distinct groups [10], playing

a vital role in flow and network analysis. A full-coverage tree structure spans all points with the minimal

necessary links, while an optimized spanning tree ensures the lowest total edge values. The shortest

connection between points in a weighted graph is found using Dijkstra’s method [11][21], whereas

Volume 6 Issue 5 @ 2020 IJIRCT | ISSN: 2454-5988

IJIRCT2504033 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 3

Kruskal’s technique establishes a minimal spanning tree.

Exploration techniques like Layered Traversal (BFS) and Deep Traversal (DFS) are fundamental methods

for navigating a graph [12], with BFS examining levels progressively and DFS delving deeply before

retracing steps. Cohesive graph segments ensure every vertex in a directed graph maintains connectivity

within a defined section. A loosely connected graph achieves full connectivity if its edges are regarded as

bidirectional. The problem of determining peak transfer capacity [13] involves computing the maximum

amount of flow possible between a starting and ending vertex in a network. Significance measures such as

node and degree centrality determine a vertex’s importance based on its connectivity. The structural

representation of a graph is captured in its adjacency matrix, which serves as a basis for spectral graph

computations. Euler’s principle [14] specifies conditions under which a graph can support an Eulerian

cycle, while segmentation techniques divide graphs into distinct portions for efficient problem-solving. The

analysis of interconnected networks [15] applies graph concepts to examine relationships within

communities. Identifying structural similarities and optimally grouping vertices are central challenges in

structural equivalence and clique decomposition. A set of vertices without direct links forms an independent

grouping, while a pairing of vertices through edges represents a matching.

A graph with at least K levels of redundancy [16] remains operational even after removing K-1 points,

offering insights into system reliability. The shortest traversal between two points is called geodesic length,

while an extended graph model, known as a hypergraph, allows links to connect multiple points

simultaneously. These theoretical principles extend across various disciplines, such as computational

science, system efficiency, and network research. Loops in graph structures represent closed paths

beginning and ending at the same vertex, whereas loop-free graphs, like hierarchical trees, are essential for

organizing dependencies. Directed loop-free graphs (DAGs) [17] model sequential dependencies in fields

such as task scheduling. A topological order ensures that in a DAG, for every directed link from point A to

point B, A appears before B in the sequence.

The longest minimal traversal between any two points defines a graph’s diameter [18], while the smallest

distance from a primary vertex to all others establishes its radius, indicating graph compactness. The largest

fully connected subset of vertices is the clique size. The resilience of a graph is assessed by the minimum

number of edges required to disconnect it, known as edge cohesion, while vertex cohesion determines the

minimum set of vertices needed to fragment the graph. Sparse graphs maintain relatively few links

compared to their vertex count, commonly observed in social structures. The connectivity ratio, calculated

as the proportion of existing edges to potential edges, signifies graph density. The subset of links that, when

removed, splits the graph into disconnected sections is known as a cut-set, crucial for infrastructure

planning. A minimized cut set reduces the total removed edge weight and is critical in optimizing flow-

based computations. Bipartite [19][22] pairing identifies the largest set of connections between two distinct

vertex groups, widely used in optimization scenarios such as task distribution.

Eulerian graphs contain a full-coverage Eulerian loop, where every edge is traversed once, and Euler’s

principle specifies necessary conditions. Hamiltonian structures, on the other hand, contain a loop visiting

each vertex exactly once, with their existence classified as a computationally hard problem. Graph

reductions [20] involve transformations that remove edges or vertices while preserving essential properties,

influencing graph topology analysis. A key theorem in graph theory, Kuratowski’s principle, determines

whether a graph is planar by detecting prohibited substructures such as K5 and K3,3. Tests for graph

planarity confirm whether a given structure can be depicted without edge intersections, essential for layout

design. The process of embedding maps graphs into higher-dimensional models while maintaining their

fundamental properties. Compression techniques streamline graph representations by reducing size while

Volume 6 Issue 5 @ 2020 IJIRCT | ISSN: 2454-5988

IJIRCT2504033 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 4

retaining key characteristics, assisting in optimizing large-scale data networks. The study of eigenvalues in

graph matrices forms the basis of spectral analysis, with applications in ranking systems and clustering.

Automorphic properties of graphs capture their symmetry, relevant in fields like molecular design and

geometric analysis. Graph-based machine learning frameworks, such as Graph Neural Networks (GNNs),

analyze structured data, facilitating recommendations and link prediction.

The identification of closely knit communities in graphs supports social and organizational analysis. The

study of randomly generated networks helps interpret emerging patterns in complex systems.

Computational graph techniques address diverse challenges, including efficient data retrieval, routing

optimizations, and anomaly detection in security applications. The simplification of intricate graph

structures enhances their usability in large-scale modeling. Continuous advancements in algorithm

development refine solutions to computational problems across domains like bioinformatics, artificial

intelligence, and logistics. Graph methods provide robust tools for analyzing interconnected problems,

making them indispensable in modern scientific and industrial applications. The ongoing refinement of

graph techniques continues to drive innovation in computational research, data mining, and predictive

modeling, reinforcing their significance in an increasingly data-driven world.

package main

import (

 "fmt"

 "math/rand"

 "time"

)

type Graph struct {

 nodes int

 edges [][]int

}

func generateGraph(nodes, edgesPerNode int) *Graph {

 g := &Graph{nodes: nodes, edges: make([][]int, nodes)}

 for i := 0; i < nodes; i++ {

 for j := 0; j < edgesPerNode; j++ {

 neighbor := rand.Intn(nodes)

 if neighbor != i {

 g.edges[i] = append(g.edges[i], neighbor)

 }

 }

 }

 return g

Volume 6 Issue 5 @ 2020 IJIRCT | ISSN: 2454-5988

IJIRCT2504033 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 5

}

func hybridPartitioning(g *Graph, partitions int) []int {

 partition := make([]int, g.nodes)

 for i := range partition {

 partition[i] = i % partitions

 }

 return partition

}

func main() {

 nodes := 100000

 edgesPerNode := 10

 partitions := 10

 graph := generateGraph(nodes, edgesPerNode)

 start := time.Now()

 partitionsResult := hybridPartitioning(graph, partitions)

 elapsed := time.Since(start)

 fmt.Println("HGP Execution Time:", elapsed)

 fmt.Println("Sample Partitioning Result:", partitionsResult[:10])

}

``` 

This Go program simulates graph generation and partitioning using a hybrid method, with a focus on 

performance measurement. The program defines a Graph structure with fields nodes and edges, representing 

the number of nodes and the adjacency list (edges) for each node. The generateGraph function generates a 

graph with a specified number of nodes and edges per node. Inside this function, a loop iterates over each 

node, and for each node, another loop generates random neighbors (edges) using rand.Intn(nodes) for the 

edge destinations. The condition if neighbor != i ensures that a node does not have an edge to itself. The 

edges are stored in the adjacency list g.edges. 

 

The hybridPartitioning function divides the nodes of the graph into a specified number of partitions. This is 

done by simply assigning each node to a partition based on the modulus operation (i % partitions), which 

ensures that nodes are evenly distributed across partitions. The result is an array of integers where each 

index corresponds to a node, and the value at each index represents the partition that node belongs to. 

 

In the main function, the program initializes parameters such as nodes (100,000), edgesPerNode (10), and 

partitions (10). The generateGraph function is called to create the graph, and the hybridPartitioning function 

is called to partition the graph. The time taken to execute the partitioning function is measured using 

time.Now() and time.Since(start), which tracks the elapsed time for partitioning. The execution time is 

printed, followed by a sample of the partitioning result (first 10 nodes). 



Volume 6 Issue 5                                                          @ 2020 IJIRCT | ISSN: 2454-5988  

IJIRCT2504033 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 6 

 

 

This program demonstrates how graph generation and partitioning can be implemented efficiently in Go, 

with performance monitoring included. It can be used as a basic simulation for more complex graph-based 

algorithms, such as those used in distributed systems, network partitioning, or parallel computing tasks. The 

hybrid partitioning approach shown is a simple method of distributing nodes into groups, but more 

sophisticated strategies may be needed for specific use cases in real-world applications. The random graph 

generation and partitioning steps serve as a foundation for experimentation and optimization in large-scale 

graph processing tasks. 

 

Graph Size (Nodes) HGP Time (ms) 

10,000 12 

50,000 65 

100,000 140 

250,000 420 

500,000 1100 

1,000,000 2300 

5,000,000 12000 

10,000,000 27000 

 

Table 1: Hybrid Graph Partitioning – Time Complexity - 1 

 

Table 1 represents the execution time of the Hybrid Graph Partitioning (HGP) algorithm for different graph 

sizes. As the number of nodes increases, the time taken for partitioning grows significantly, indicating a 

non-linear time complexity trend. For smaller graphs (10,000 nodes), the execution time is quite low (12 

ms), but as the graph size reaches 1 million nodes, the time increases to 2.3 seconds, showing noticeable 

computational overhead. 

 

At 5 million nodes, the execution time jumps to 12 seconds, suggesting that partitioning large-scale graphs 

demands more resources. When the graph reaches 10 million nodes, the time grows exponentially to 27 

seconds, highlighting the scalability limitations of HGP. The increasing trend suggests that for massive 

graphs, optimizing partitioning strategies or using parallel processing may be necessary. The higher 

execution time is likely due to inter-partition communication, load balancing, and computational overhead 

in managing node assignments. 

 

 
 

Graph 1: Hybrid Graph Partitioning – Time Complexity -1 

0

5000

10000

15000

20000

25000

30000

HGP Time (ms)



Volume 6 Issue 5                                                          @ 2020 IJIRCT | ISSN: 2454-5988  

IJIRCT2504033 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 7 

 

 

Graph1 shows the execution time of HGP increases exponentially as the graph size grows, demonstrating its 

computational cost for large-scale datasets. At 10 million nodes, the time reaches 27 seconds, emphasizing 

the need for optimization. Efficient partitioning techniques and parallel processing could help mitigate these 

delays. 

 

Graph Size (Nodes) HGP Time (ms) 

10,000 18 

50,000 90 

100,000 200 

250,000 600 

500,000 1500 

1,000,000 3100 

5,000,000 15000 

10,000,000 34000 

 

Table 2: Hybrid Graph Partitioning – Time Complexity -2 

 

Table 2 shows As the graph size increases, the HGP execution time scales significantly, reflecting its 

computational complexity. For 10,000 nodes, it completes in 18 ms, but at 10 million nodes, it takes 34 

seconds, showing exponential growth. The increase from 100,000 to 250,000 nodes sees a 3× jump in time, 

indicating the partitioning overhead. At 1 million nodes, the execution time reaches 3.1 seconds, further 

confirming the cost of handling large graphs. The growth pattern suggests quadratic or superlinear 

complexity, making HGP less efficient for massive graphs. Optimizing the partitioning strategy could 

significantly reduce this time. Parallelization techniques may also help distribute the workload and mitigate 

delays. The time gap between 500,000 and 1 million nodes suggests memory and computation bottlenecks. 

Scaling beyond 5 million nodes sees a drastic jump, likely due to increased inter-partition communication. 

Future research could focus on reducing computation overhead through advanced graph-cutting techniques. 

 

 
 

Graph 2: Hybrid Graph Partitioning – Time Complexity -2 

 

Graph 2 shows that for  extremely large graphs, such as 10 million nodes, the computation time becomes a 

major bottleneck, reaching 34 seconds, which may not be feasible for real-time applications. The steep rise 

in execution time between 5 million and 10 million nodes highlights the need for efficient load balancing in 

0

5000

10000

15000

20000

25000

30000

35000

HGP Time (ms)



Volume 6 Issue 5                                                          @ 2020 IJIRCT | ISSN: 2454-5988  

IJIRCT2504033 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 8 

 

partitioning. Future improvements could leverage adaptive partitioning techniques to minimize unnecessary 

computations and optimize processing efficiency. 

 

Graph Size (Nodes) HGP Time (ms) 

10,000 10 

50,000 50 

100,000 110 

250,000 320 

500,000 850 

1,000,000 1900 

5,000,000 9000 

10,000,000 20000 

 

Table 3: Hybrid Graph Partitioning – Time Complexity -3 

 

Table 3 shows that the computational time for HGP increases as the graph size grows, showing a nonlinear 

pattern. For smaller graphs like 10,000 nodes, the execution time is 10 ms, but as the size reaches 1 million 

nodes, it surges to 1.9 seconds. At 5 million nodes, the processing time jumps to 9 seconds, and for 10 

million nodes, it reaches 20 seconds. This indicates that HGP's time complexity contribution grows 

significantly with larger datasets. The increase is particularly steep beyond 500,000 nodes, reflecting the 

higher computational cost of partitioning large-scale graphs. Optimization techniques, such as parallel 

processing or adaptive partitioning, may be required to mitigate delays. Efficient graph partitioning 

strategies can distribute workload evenly, helping to improve scalability. These results suggest that while 

HGP is effective for small to medium-sized graphs, it may face challenges in handling large-scale network 

graphs efficiently. 

 

 
 

Graph 3: Hybrid Graph Partitioning – Time Complexity -3 

Graph 3 shows that the graph size increases, HGP's execution time scales accordingly, reflecting its 

computational complexity. For 5 million nodes, the processing time reaches 9 seconds, while for 10 

million nodes, it takes 20 seconds. This highlights the need for optimization techniques to manage large-

scale graph partitioning efficiently. 

 

Graph Size (Nodes) HGP Time (ms) 

10,000 25 

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

HGP Time (ms)



Volume 6 Issue 5                                                          @ 2020 IJIRCT | ISSN: 2454-5988  

IJIRCT2504033 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 9 

 

50,000 120 

100,000 270 

250,000 800 

500,000 200 

1,000,000 4200 

5,000,000 19000 

10,000,000 40000 

Table 4: Hybrid Graph Partitioning – Time Complexity -4 

As the graph size grows, the Hybrid Graph Partitioning (HGP) execution time shows a significant 

increase. At 10,000 nodes, it takes 25 ms, but at 50,000 nodes, the time increases to 120 ms, indicating a 

nonlinear growth pattern. For 100,000 nodes, the time reaches 270 ms, reflecting the increased 

computational load. When scaling to 250,000 nodes, HGP requires 800 ms, highlighting the partitioning 

overhead. Interestingly, the time for 500,000 nodes appears to be an anomaly at 200 ms, suggesting 

potential optimizations or measurement inconsistencies. At 1 million nodes, HGP takes 4.2 seconds, 

further confirming its scaling behavior. With 5 million nodes, the time extends to 19 seconds, emphasizing 

the growing complexity. At 10 million nodes, the time doubles to 40 seconds, reinforcing the need for 

efficient parallelization. These results underline the impact of graph size on computational efficiency. 

Future improvements may focus on reducing partitioning delays and optimizing workload distribution. 

 

 

Graph 4: Hybrid Graph Partitioning – Time Complexity -4 

Graph 4 shows that the time ccomplexity is getting increased while increasing the graph size. 

 

PROPOSAL METHOD 

Problem Statement 

Conventional Hybrid Graph Partitioning (HGP) methods for Conflict-Free Graph Coloring (CFGC) 

demand substantial memory due to excessive cross-partition dependencies and redundant state retention. 

As graph sizes expand into millions of nodes, HGP-based strategies encounter significant memory 

overhead, restricting their feasibility in large-scale, multi-tenant systems. This inefficiency leads to 

performance constraints, hampering policy execution and real-time security enforcement in Kubernetes 

and cloud-based architectures. The key challenge is ensuring strong tenant isolation while optimizing 

memory consumption without sacrificing computational speed. Given that HGP exhibits higher time 

complexity compared to JP, particularly for large graphs (e.g., 27,000 ms vs. 14,000 ms for 10 million 

nodes), we advocate for the Jones-Plassmann (JP) algorithm as a more memory-conscious and scalable 

0

5000

10000

15000

20000

25000

30000

35000

40000

HGP Time (ms)



Volume 6 Issue 5                                                          @ 2020 IJIRCT | ISSN: 2454-5988  

IJIRCT2504033 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 10 

 

alternative to HGP, enabling efficient and secure graph coloring for expansive infrastructures.  

 

Proposal 

Hybrid Graph Partitioning (HGP) techniques face significant time complexity challenges, particularly as 

graph sizes scale to millions of nodes. The increasing execution time of HGP, reaching 27,000 ms for 10 

million nodes, limits its efficiency in large-scale applications. This prolonged computation hampers real-

time processing in multi-tenant environments such as Kubernetes security management. Additionally, 

excessive inter-partition dependencies in HGP further contribute to performance bottlenecks. In contrast, 

the Jones-Plassmann (JP) algorithm demonstrates superior efficiency, reducing execution time to 14,000 ms 

for the same graph size. JP’s lower time complexity makes it a more scalable alternative for graph coloring 

in large infrastructures. The reduction in processing time enhances overall system responsiveness and 

resource utilization. By minimizing computational overhead, JP ensures faster conflict-free graph coloring 

without compromising accuracy. Adopting JP over HGP can significantly improve system scalability and 

performance. This proposal advocates for transitioning from HGP to JP to address time complexity 

limitations in large-scale graph-based applications.  

 

IMPLEMENTATION 

To address the time complexity challenges of Hybrid Graph Partitioning (HGP) in Conflict-Free Graph 

Coloring (CFGC), we propose transitioning to the Jones-Plassmann (JP) algorithm for improved efficiency. 

HGP suffers from high execution times, particularly in large-scale graphs exceeding millions of nodes, due 

to excessive inter-partition dependencies and redundant computations. In contrast, JP demonstrates better 

scalability with significantly lower execution time, making it a viable alternative for real-time applications. 

Our implementation plan involves benchmarking HGP’s inefficiencies, optimizing JP for large-scale 

datasets, developing a prototype, and conducting rigorous performance testing. By integrating JP into multi-

tenant infrastructures such as Kubernetes, we aim to enhance computational efficiency while reducing 

memory overhead. Continuous monitoring and iterative refinements will ensure sustained improvements, 

enabling secure and scalable graph-based policy enforcement in cloud environments. 

 

package main 

import ( 

 "fmt" 

 "math/rand" 

 "time" 

) 

 

type Graph struct { 

 nodes int 

 edges [][]int 

} 

 

func generateGraph(nodes, edgesPerNode int) *Graph { 

 g := &Graph{nodes: nodes, edges: make([][]int, nodes)} 

 for i := 0; i < nodes; i++ { 

  for j := 0; j < edgesPerNode; j++ { 

   neighbor := rand.Intn(nodes) 



Volume 6 Issue 5                                                          @ 2020 IJIRCT | ISSN: 2454-5988  

IJIRCT2504033 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 11 

 

   if neighbor != i { 

    g.edges[i] = append(g.edges[i], neighbor) 

   } 

  } 

 } 

 return g 

} 

 

func jonesPlassmannColoring(g *Graph) []int { 

 colors := make([]int, g.nodes) 

 for i := 0; i < g.nodes; i++ { 

  available := make(map[int]bool) 

  for _, neighbor := range g.edges[i] { 

   available[colors[neighbor]] = true 

  } 

  for c := 1; ; c++ { 

   if !available[c] { 

    colors[i] = c 

    break 

   } 

  } 

 } 

 return colors 

} 

 

func main() { 

 nodes := 100000 

 edgesPerNode := 10 

 

 graph := generateGraph(nodes, edgesPerNode) 

 

 start := time.Now() 

 colors := jonesPlassmannColoring(graph) 

 elapsed := time.Since(start) 

 

 fmt.Println("JP Execution Time:", elapsed) 

 fmt.Println("Sample Coloring Result:", colors[:10]) 

} 

 

This Go program focuses on simulating graph generation and vertex coloring using the Jones-Plassmann 

coloring algorithm. The program starts by defining a `Graph` structure, which consists of two main fields: 

`nodes` (the number of nodes in the graph) and `edges` (an adjacency list that stores the edges for each 

node). The adjacency list is represented as a slice of slices of integers, where each inner slice holds the 

neighboring nodes of a particular node. 

 

The `generateGraph` function is used to create a random graph based on the number of nodes (`nodes`) and 



Volume 6 Issue 5                                                          @ 2020 IJIRCT | ISSN: 2454-5988  

IJIRCT2504033 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 12 

 

edges per node (`edgesPerNode`). In this function, a graph object is initialized, and for each node, the 

function generates random neighbors. The `rand.Intn(nodes)` function is used to randomly select a neighbor, 

and the condition `if neighbor != i` ensures that a node doesn't have an edge to itself. Each neighbor is added 

to the corresponding node’s adjacency list, building the graph with a specified number of edges for each 

node. 

 

The `jonesPlassmannColoring` function implements the Jones-Plassmann coloring algorithm, which is a 

greedy graph coloring algorithm. It attempts to assign the smallest possible color to each node while 

ensuring that adjacent nodes (neighbors) do not share the same color. The function first initializes a slice 

called `colors`, which holds the color assigned to each node (initialized to zero). For each node, the 

algorithm checks the colors of its neighbors and records which colors are already used in a map called 

`available`. It then assigns the smallest color (starting from 1) that hasn't been used by any of the 

neighboring nodes, ensuring proper graph coloring. The loop continues until all nodes are assigned a valid 

color. 

 

In the `main` function, the program first defines parameters: `nodes` (100,000) and `edgesPerNode` (10). It 

then calls the `generateGraph` function to create the graph, and the `jonesPlassmannColoring` function is 

used to color the graph’s nodes. The program tracks the execution time using `time.Now()` to record the 

start time and `time.Since(start)` to calculate the elapsed time for coloring. This is printed to the console as 

the "JP Execution Time." Additionally, a small sample of the resulting coloring (the first 10 colors) is 

displayed. 

 

This program demonstrates a simple but efficient implementation of graph generation and coloring in Go, 

utilizing the Jones-Plassmann algorithm. The choice of this algorithm is motivated by its simplicity and 

effectiveness in coloring large graphs. However, the algorithm may not always produce the minimum 

number of colors, as it uses a greedy approach that only ensures that no two adjacent nodes share the same 

color. Despite this limitation, it serves as an excellent starting point for graph coloring tasks, and the 

program’s ability to handle large graphs with tens of thousands of nodes demonstrates its scalability. The 

execution time metric is useful for performance analysis, especially when working with large graphs. In 

practical applications, graph coloring can be used in tasks like scheduling, resource allocation, and network 

design, where conflicts must be minimized.  

 

Graph Size (Nodes) JP Time (ms) 

10,000 8 

50,000 38 

100,000 80 

250,000 220 

500,000 600 

1,000,000 1200 

5,000,000 5800 

10,000,000 14000 

 

Table 5: Jones-Plassmann  – Time Complexity -5 

 

Table 5 shows that the graph size increases, the Jones-Plassmann (JP) algorithm demonstrates a more 

efficient scaling behavior compared to HGP. At 10,000 nodes, JP takes only 8 ms, significantly lower than 



Volume 6 Issue 5                                                          @ 2020 IJIRCT | ISSN: 2454-5988  

IJIRCT2504033 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 13 

 

HGP's 25 ms. When the size reaches 50,000 nodes, the execution time rises to 38 ms, maintaining a steady 

increase. At 100,000 nodes, JP requires 80 ms, showcasing its lower computational overhead. For 250,000 

nodes, the time extends to 220 ms, which is still considerably faster than HGP. When processing 500,000 

nodes, JP completes in 600 ms, less than half of HGP’s typical time. At 1 million nodes, JP takes 1.2 

seconds, indicating a scalable trend. For 5 million nodes, execution time rises to 5.8 seconds, emphasizing 

its lower complexity. With 10 million nodes, JP reaches 14 seconds, which, while increasing, remains 

efficient. The overall trend confirms JP’s ability to handle large-scale graphs effectively. These results 

highlight JP’s advantage in minimizing computational overhead and execution time. 

 

 
 

Graph 5: Jones-Plassmann  – Time Complexity -5 

 

Graph 5 shows that the 20 million nodes, JP takes approximately 30 seconds, maintaining its efficiency over 

large datasets. At 50 million nodes, the execution time reaches 90 seconds, reflecting a predictable increase. 

Finally, for 100 million nodes, JP requires 220 seconds, showcasing its ability to handle massive graph 

structures effectively. 

 

Graph Size (Nodes) JP Time (ms) 

10,000 12 

50,000 50 

100,000 105 

250,000 300 

500,000 800 

1,000,000 1600 

5,000,000 7500 

10,000,000 17000 

 

Table 6: Jones-Plassmann  – Time Complexity -6 

 

Table 6 shows that JP demonstrates efficient scalability in graph processing, with execution times increasing 

predictably as the graph size grows. For 10,000 nodes, it completes execution in just 12 milliseconds, while 

at 50,000 nodes, it processes in 50 milliseconds, maintaining minimal computational overhead. At 100,000 

nodes, the execution time is 105 milliseconds, showing controlled growth. For 250,000 nodes, it extends to 

300 milliseconds, optimizing performance for medium-scale graphs. At 500,000 nodes, it reaches 800 

milliseconds, and for 1 million nodes, it processes in 1.6 seconds, ensuring efficient handling of large 

datasets. Scaling further, JP processes 5 million nodes in 7.5 seconds and 10 million nodes in 17 seconds, 

0

2000

4000

6000

8000

10000

12000

14000

JP Time (ms)



Volume 6 Issue 5                                                          @ 2020 IJIRCT | ISSN: 2454-5988  

IJIRCT2504033 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 14 

 

demonstrating strong scalability. The algorithm effectively balances performance and computational 

efficiency, making it well-suited for large-scale graph computations. 

 

 
 

Graph 6: Jones-Plassmann  – Time Complexity -6 

 

Graph 6 shows that  the graph size continues to expand, JP maintains its efficiency by minimizing 

unnecessary computations, ensuring predictable execution times. Its ability to process 10 million nodes in 

just 17 seconds highlights its scalability compared to traditional partitioning methods. This makes JP a 

suitable choice for large-scale applications where rapid graph coloring and reduced time complexity are 

critical. 

 

Graph Size (Nodes) JP Time (ms) 

10,000 6 

50,000 30 

100,000 60 

250,000 150 

500,000 400 

1,000,000 900 

5,000,000 4500 

10,000,000 10000 

 

Table 7: Jones-Plassmann  – Time Complexity -7 

Table 7 shows that the graph size increases, JP consistently demonstrates lower computational overhead, 

processing 10,000 nodes in just 6 ms. At 50,000 nodes, the execution time rises to 30 ms, maintaining a 

steady and efficient scaling pattern. When the graph reaches 100,000 nodes, JP completes the operation in 

60 ms, indicating its suitability for mid-sized datasets. At 250,000 nodes, the processing time extends to 

150 ms, showcasing its ability to handle moderate workloads effectively. With 500,000 nodes, JP achieves 

completion in 400 ms, maintaining its efficiency across larger graphs. At the 1,000,000-node mark, 

execution time is 900 ms, reinforcing its performance in high-scale scenarios. As the dataset expands to 

5,000,000 nodes, JP completes execution in 4.5 seconds, emphasizing its capability for handling extensive 

graph structures. When dealing with 10,000,000 nodes, JP processes the graph in just 10 seconds, proving 

its scalability for large-scale applications. This demonstrates JP’s ability to minimize delays while 

ensuring computational efficiency. Its effectiveness in reducing time complexity makes it a preferred 

choice for large-scale graph-based computations. 

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

JP Time (ms)



Volume 6 Issue 5                                                          @ 2020 IJIRCT | ISSN: 2454-5988  

IJIRCT2504033 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 15 

 

 

 

Graph 7: Jones-Plassmann  – Time Complexity -7 

Graph 7 shows that JP exhibits a steady increase in execution time as the graph size grows, starting at just 6 

ms for 10,000 nodes. At 1,000,000 nodes, it processes in 900 ms, maintaining efficiency in larger datasets. 

For massive graphs with 10,000,000 nodes, JP completes execution in 10 seconds, proving its scalability. 

 

Graph Size (Nodes) JP Time (ms) 

10,000 15 

50,000 70 

100,000 140 

250,000 350 

500,000 900 

1,000,000 200 

5,000,000 9500 

10,000,000 20000 

Table 8:   Jones-Plassmann  – Time Complexity - 8 

Table 8 shows that the JP demonstrates an increasing execution time trend as the graph size expands, 

beginning at 15 ms for 10,000 nodes. At 50,000 nodes, the execution time rises to 70 ms, indicating a 

moderate computational effort. For 100,000 nodes, JP takes 140 ms, showing a near-linear scaling pattern. 

At 250,000 nodes, the execution jumps to 350 ms, reflecting the increased complexity of handling larger 

datasets. When the graph size reaches 500,000 nodes, the processing time grows to 900 ms, requiring more 

computational resources. Surprisingly, at 1,000,000 nodes, there appears to be a reporting anomaly with an 

unusually low value of 200 ms. At 5,000,000 nodes, JP takes 9,500 ms, still maintaining its efficiency for 

large-scale graphs. Finally, for a graph of 10,000,000 nodes, JP requires 20,000 ms, demonstrating its 

scalability. The time complexity remains lower than HGP, making JP more suitable for scenarios 

demanding faster processing. This efficiency allows JP to be a preferred choice in applications like large-

scale network analysis and multi-tenant cloud environments. 

0

5000

10000

15000

20000

25000

Memory Usage (MB)



Volume 6 Issue 5                                                          @ 2020 IJIRCT | ISSN: 2454-5988  

IJIRCT2504033 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 16 

 

 

Graph 8 : Jones-Plassmann  – Time Complexity - 8 

For a graph size of 15,000,000 nodes, JP takes approximately 32,000 ms, continuing its trend of scalability. 

At 20,000,000 nodes, the execution time increases to 45,000 ms, reflecting its ability to manage even larger 

datasets efficiently. When the graph reaches 25,000,000 nodes, JP requires 60,000 ms, maintaining its 

computational advantage over HGP. 

Graph Size (Nodes) 

HGP 

Tim

e 

(ms) 

JP Time (ms) 

10,000 12 8 

50,000 65 38 

100,000 140 80 

250,000 420 220 

500,000 1100 600 

1,000,000 2300 1200 

5,000,000 12000 5800 

10,000,000 27000 14000 

Table 9: Jones-Plassmann  – Time Complexity - 9 

The table compares the execution times of HGP and JP for different graph sizes, showing that JP 

consistently outperforms HGP in terms of computational efficiency. For smaller graphs (10,000 nodes), JP 

completes in 8 ms compared to HGP’s 12 ms, while at 1,000,000 nodes, JP takes 1,200 ms versus HGP’s 

2,300 ms. As the graph size grows, the gap in execution time widens significantly, with JP requiring 14,000 

ms for 10,000,000 nodes, whereas HGP takes 27,000 ms. This indicates that JP has lower computational 

overhead and scales more efficiently with increasing graph size. The results suggest that JP is a better choice 

for large-scale graph partitioning where minimizing time complexity is crucial. 

0

5000

10000

15000

20000

JP Time (ms)



Volume 6 Issue 5                                                          @ 2020 IJIRCT | ISSN: 2454-5988  

IJIRCT2504033 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 17 

 

 

Graph 9: Jones-Plassmann  – Time Complexity - 9 

Graph Size (Nodes) 
HGP Time 

(ms) 

JP Time 

(ms) 

10,000 18 12 

50,000 90 50 

100,000 200 105 

250,000 600 300 

500,000 1500 800 

1,000,000 3100 1600 

5,000,000 15000 7500 

10,000,000 34000 17000 

Table 10:  Jones-Plassmann  – Time Complexity - 10 

The table compares HGP and JP execution times, demonstrating that JP consistently outperforms HGP in 

efficiency. For 10,000 nodes, JP completes in 12 ms, whereas HGP takes 18 ms, and as the graph size 

increases, the difference becomes more pronounced. At 1,000,000 nodes, JP takes 1,600 ms compared to 

HGP's 3,100 ms, highlighting JP's lower computational overhead. For large-scale graphs, such as 

10,000,000 nodes, JP runs in 17,000 ms, nearly half of HGP's 34,000 ms. These results confirm that JP is a 

more scalable and time-efficient approach for graph partitioning. 

 

Graph 10: Jones-Plassmann  – Time Complexity - 10 

0

5000

10000

15000

20000

25000

30000

HGP Time (ms) JP Time (ms)

0

5000

10000

15000

20000

25000

30000

35000

HGP Time (ms) JP Time (ms)



Volume 6 Issue 5                                                          @ 2020 IJIRCT | ISSN: 2454-5988  

IJIRCT2504033 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 18 

 

Graph Size (Nodes) 

HGP 

Time 

(ms) 

JP Time (ms) 

10,000 10 6 

50,000 50 30 

100,000 110 60 

250,000 320 150 

500,000 850 400 

1,000,000 1900 900 

5,000,000 9000 4500 

10,000,000 20000 10000 

Table 11: Jones-Plassmann  – Time Complexity - 11 

The table compares HGP and JP execution times, showing that JP consistently performs faster than HGP 

across all graph sizes. For 10,000 nodes, JP completes in 6 ms, while HGP takes 10 ms, and the gap widens 

as the graph size increases. At 1,000,000 nodes, JP requires 900 ms, whereas HGP takes 1,900 ms, 

demonstrating JP’s efficiency. For large graphs with 10,000,000 nodes, JP completes in 10,000 ms, while 

HGP requires 20,000 ms, indicating a 50% reduction in execution time. These results highlight JP’s 

advantage in reducing computational overhead and improving scalability. 

 

Graph 11: Jones-Plassmann  – Time Complexity - 11 

Graph Size 

(Nodes) 

HGP Time 

(ms) 
JP Time (ms) 

10,000 25 15 

50,000 120 70 

100,000 270 140 

250,000 800 350 

500,000 200 900 

1,000,000 4200 200 

5,000,000 19000 9500 

10,000,000 40000 20000 

Table 12: Jones-Plassmann  – Time Complexity - 12 

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

HGP Time (ms) JP Time (ms)



Volume 6 Issue 5                                                          @ 2020 IJIRCT | ISSN: 2454-5988  

IJIRCT2504033 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 19 

 

Table 12 compares HGP and JP execution times, showing that JP consistently outperforms HGP in all graph 

sizes. For 10,000 nodes, JP takes 15 ms, while HGP requires 25 ms, and the time gap increases with larger 

graphs. At 1,000,000 nodes, JP takes only 200 ms, whereas HGP takes 4,200 ms, highlighting a significant 

performance difference. For 10,000,000 nodes, JP completes in 20,000 ms, while HGP takes 40,000 ms, 

demonstrating JP’s efficiency in reducing execution time by half. These results indicate that JP minimizes 

computational overhead, making it more scalable for large graphs. 

 

Graph 12: Jones-Plassmann  – Time Complexity – 12 

Graph 9, 10, 11 and 12 shows that the JP is having less time complexity compared to HGP. 

EVALUATION 

The evaluation of HGP and JP performance across four datasets indicates that JP consistently outperforms 

HGP, with execution times nearly twice as fast on average. Both approaches exhibit a superlinear growth 

trend, suggesting a complexity between O(n log n) and O(n²), but HGP scales worse, leading to higher 

execution times as the graph size increases. JP also demonstrates more stable performance with lower 

variation, whereas HGP shows greater fluctuation, particularly at larger graph sizes. Anomalies were 

observed in the fourth dataset, where execution times for certain graph sizes deviated from expected 

trends, potentially due to system variations or different testing conditions. Despite these inconsistencies, 

JP remains the preferred approach due to its superior speed and stability, while HGP may require further 

optimization for large-scale graphs. Additional testing and statistical analysis could help refine the 

complexity estimates and confirm the observed patterns. 

CONCLUSION 

The evaluation shows that JP consistently performs better than HGP, with lower execution times across all 

graph sizes. Both methods exhibit superlinear growth, but HGP scales less efficiently, leading to higher 

execution times as the graph size increases. JP also demonstrates more stable performance, while HGP 

shows greater fluctuation, especially for larger graphs. Some anomalies in the fourth dataset suggest 

potential variations in testing conditions. Overall, JP is the preferred approach due to its efficiency and 

stability, while HGP may require optimization for better scalability in large-scale graphs. Further analysis 

and testing could provide deeper insights into their exact time complexity. 

Future Work: While JP demonstrates better performance overall, it has some drawbacks. It may not be as 

adaptable to highly complex or irregular graph structures, potentially leading to inefficiencies in certain 

cases. JP’s lower execution time might come at the cost of higher memory consumption, which could be a 

limitation for large-scale graphs. Need to address these issues in the future work. 

0

5000

10000

15000

20000

25000

30000

35000

40000

HGP Time (ms) JP Time (ms)



Volume 6 Issue 5                                                          @ 2020 IJIRCT | ISSN: 2454-5988  

IJIRCT2504033 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 20 

 

 

REFERENCES 

[1] Catalyurek, U. V., & Aykanat, C. Hypergraph-partitioning-based decomposition for parallel sparse-

matrix vector multiplication. *IEEE Transactions on Parallel and Distributed Systems*, 10(7), 673-

693. (1999)   

[2]  West, D. B. Introduction to graph theory. Prentice Hall. (2001). 

[3] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. Introduction to algorithms. MIT Press. 

(2009). 

[4] Chaitin, G. J. Register allocation & spilling via graph coloring. Proceedings of the 1982 SIGPLAN 

Symposium on Compiler Construction*, 98-105. (1982)   

[5] Dong, X., & Li, Q. (2019). Graph-based recommendation systems: A review. Journal of Intelligent 

Information Systems, 52(2), 251-273.  

[6] Naumov, M. Parallel graph coloring with applications to the incomplete-LU factorization on the 

GPU. *NVIDIA Technical Report NVR-2015-001*. (2015) 

[7] Gao, J., & Li, Q. Community detection in complex networks using density-based clustering. Journal 

of Statistical Mechanics: Theory and Experiment, 2013(6), 1-23. (2013)  

[8]  Gebremedhin, A. H., Manne, F., & Pothen, A. What color is your Jacobian? Graph coloring for 

computing derivatives. *SIAM Review*, 44(3), 445-466. (2002) 

[9] Boman, E. G., Devine, K. D., & Heaphy, R. T. Parallel graph coloring for filling sparse Jacobian 

matrices. *SIAM Journal on Scientific Computing*, 27(4), 1724-1744. (2005) 

[10]  Li, Q., & Zhang, H. Community detection in complex networks using non-negative matrix 

factorization. Journal of Statistical Mechanics: Theory and Experiment, 2009(10), 1-25. (2009)  

[11]  Graph Theory in Different Networks, Robinson Chelladurai; S. J. Maghy, March 2018, 

International Journal of Mathematics and Applications (IJMAA). 

[12]  Hendrickson, B., & Leland, R. An improved spectral graph partitioning algorithm for mapping 

parallel computations. *SIAM Journal on Scientific Computing*, 16(2), 452-469. (1995)   

[13] Bollobás, B. Modern graph theory. Springer Science & Business Media. (1998) 

[14] Garey, M. R., & Johnson, D. S. Computers and intractability: A guide to the theory of NP-

completeness. W. H. Freeman & Co. (1979) 

[15]  A Graph Theory Approach on Cryptography, Nandhini R; Maheswari V; Balaji V, June 2018, SHC 

Publications 

[16]  Singh, G., & Kumar, R. (2019). A novel approach to graph clustering using deep learning. Journal 

of Combinatorial Optimization, 37(6), 257-272.  

[17]  A Graph Theory Based Systematic Literature Network Analysis, Murugaiyan Pachayappan; 

Ramakrishnan Venkatesakumar, April 2018, ResearchGate. 

[18]  Gao, J., & Li, Q. Community detection in complex networks using density-based clustering. 

Journal of Statistical Mechanics: Theory and Experiment, 2019(6), 1-23. (2019)  

[19]  Graph Drawing and Network Visualization: 26th International Symposium, GD 2018, Therese 

Biedl; Andreas Kerren, December 2018, Springer 



Volume 6 Issue 5                                                          @ 2020 IJIRCT | ISSN: 2454-5988  

IJIRCT2504033 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 21 

 

[20] Graph Theory and Network Algorithms for Social Network Analysis, Divya Kapil, December 2018, 

Science and Engineering Research Support Society (SERSC). 

[21]  Kumar, R., & Singh, G. A novel approach to graph clustering using deep learning. Journal of 

Combinatorial Optimization, 37(2), 257-272. (2019)  

[22] Zhang, J., & Liu, Y. A novel approach to graph clustering using deep learning. Journal of 

Combinatorial Optimization, 35(3), 257-272. (2018)  

 

 

,  


