
Volume 11 Issue 2                                                       @ 2025 IJIRCT | ISSN: 2454-5988 

 

IJIRCT2504004 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 1 

 

Building a Scalable ETL Pipeline with Apache 

Spark, Airflow, and Snowflake 

Ujjawal Nayak 
 

Software Development Manager 

Abstract 

Extract, Transform, and Load (ETL) pipelines are critical in modern data engineering, enabling 

efficient data integration and analytics. This paper presents a scalable ETL pipeline leveraging 

Apache Spark for distributed data processing, Apache Airflow for workflow orchestration, and 

Snowflake as a cloud-based data warehouse. The proposed architecture ensures fault tolerance, cost 

efficiency, and high scalability, making it suitable for handling large-scale enterprise data workloads. 
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I. Introduction 

In the era of big data, enterprises require robust ETL pipelines to ingest, process, and store vast amounts of 

data efficiently. Traditional ETL tools often struggle with scalability, necessitating a modern approach using 

distributed computing and cloud-based storage solutions. Apache Spark, Apache Airflow, and Snowflake 

are powerful combinations to build resilient and scalable ETL pipelines. 

This paper uses these technologies to explore an ETL pipeline's architecture, implementation, and 

optimization strategies, ensuring performance and cost-effectiveness. 

II. Architecture Overview 

The proposed ETL pipeline consists of three core components: 

1. Apache Spark - Performs large-scale data transformations using a distributed computing 

framework. 

2. Apache Airflow - Orchestrates ETL workflows, ensuring job scheduling and dependency 

management. 

3. Snowflake - Serves as the destination for transformed data, providing scalable and efficient cloud 

storage. 
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Figure 1: Architecture Overview 

This modular architecture ensures fault tolerance and scalability while maintaining ease of maintenance. 

III. ETL Pipeline Components 

A. Data Extraction 

Data is extracted from various sources, including relational databases (PostgreSQL, MySQL), NoSQL 

stores (MongoDB), and cloud storage (AWS S3, Azure Blob Storage). Apache Spark’s Spark SQL and 

Structured Streaming enable efficient batch and real-time data extraction. 

B. Data Transformation 

Using Spark’s Resilient Distributed Dataset (RDD) and DataFrame API, raw data undergoes 

transformation processes such as cleansing, deduplication, enrichment, and aggregation. Spark’s parallel 

processing capabilities allow for the efficient handling of large datasets. 

C. Data Loading 

Transformed data is loaded into Snowflake using Spark Connector for Snowflake or COPY INTO 

commands. Snowflake’s auto-scaling and compression features ensure high-performance storage and 

querying capabilities. Instead of using matrices, generic views are implemented to structure and optimize 

data retrieval efficiently. 

IV. Workflow Orchestration with Apache Airflow 

Airflow manages ETL job scheduling and execution using Directed Acyclic Graphs (DAGs). Key 

functionalities include: 

● Task Dependencies: Ensuring sequential execution (Extract → Transform → Load). 

● Retries & Alerts: Handling failures with automatic retries and notifications. 

● Parallel Processing: Optimizing execution using Airflow Executors (Celery, Kubernetes). 
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V. Optimization Strategies 

To enhance performance and cost efficiency, the following strategies are applied: 

1. Spark Optimization: 

○ Caching intermediate results. 

○ Using predicate pushdown to reduce data scans. 

○ Configuring dynamic resource allocation to optimize cluster usage. 

2. Airflow Optimization: 

○ Using task parallelism with worker nodes. 

○ Implementing XComs for efficient data sharing between tasks. 

3. Snowflake Optimization: 

○ Partitioning large tables for efficient querying. 

○ Leveraging generic views to improve query performance and avoid unnecessary 

recomputation. 

VI. Case Study and Performance Benchmarking 

A real-world implementation is evaluated by processing a large dataset. The performance analysis highlights 

improvements in ETL execution time, cost efficiency, and system scalability. Spark optimizations contribute 

to faster data processing, Snowflake's features enhance storage and retrieval efficiency, and Airflow ensures 

smooth task orchestration. The results demonstrate the effectiveness of this architecture in handling growing 

data volumes while maintaining operational efficiency. 

VII. Conclusion 

This paper demonstrates the effectiveness of Apache Spark, Airflow, and Snowflake in building a scalable 

ETL pipeline. The proposed approach ensures efficient data ingestion, transformation, and storage while 

optimizing costs. Future work includes integrating AI-driven anomaly detection and real-time analytics. 
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