
Volume 8 Issue 3 @ 2022 IJIRCT | ISSN: 2454-5988

IJIRCT2501042 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 1

Migration Strategies to Azure Serverless

Computing: Patterns, Practices, and

Implementation

Prabu Arjunan

prabuarjunan@gmail.com

Senior Technical Marketing Engineer

Abstract

Migration to serverless architecture reflects a significant change in the ways of renewing applications

within organizations. This research paper summarizes the strategy of migration toward Azure's

serverless computational platform. It investigates the patterns, challenges, and various ways of

implementation. We show, through real-world migration scenarios and practical implementation

guides, how companies can easily transition existing applications to Azure's serverless platform and,

at the same time, ensure cost optimization with operational efficiency. It also provides decision

frameworks, migration patterns, and implementation guidelines drawn from a set of production

migrations.

Keywords: Serverless Migration, Microsoft Azure, Azure Functions, Event Grid, Migration Patterns,

Microservices, Cloud Native, Application Modernization

Introduction

The evolution of cloud computing has made serverless architectures an attractive target for application

modernization. As highlighted in [1], the transition to serverless computing requires careful consideration of

architecture, state management, and integration patterns. Research shows [2] that successful migrations

require systematic evaluation of application characteristics and clear migration strategies.The serverless

paradigm in Azure extends these principles, providing a comprehensive platform for application

modernization through its primary compute services: Azure Functions and Container Apps.

Migration to serverless architecture reflects significant changes in the ways of renewing applications within

organizations. The goal of this research paper is to sum up the strategy of migration towards Azure's

serverless computational platform: looking into patterns, challenges, and various ways of implementation. It

discusses how companies can easily migrate the existing applications to Azure's serverless platform and,

while doing so, ensure cost optimization with operational efficiency. In the process, it provides various

decision frameworks, migration patterns, and implementation guidelines as per a set of production

migrations.

Migration Assessment Framework

The success from serverless migration depends principally on thorough initial assessment of the application

landscape. Application characteristics remain the driving factors for the type of migration approach.

Assessing applications for serverless migration, an organization has to check request patterns- processing

duration and state management in general. Applications whose use patterns are sporadic or have low state

Volume 8 Issue 3 @ 2022 IJIRCT | ISSN: 2454-5988

IJIRCT2501042 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 2

management requirement are normally the best fit for Azure Functions while application requiring longer

times of process or complex state management represents a better fit for Container Apps.

Technical constraints are another critical dimension of the assessment framework. As explained in [3], the

compatibility with supported runtime environments and third-party dependencies is a major determinant of

the migration strategy. An organization has to assess the compatibility of its applications to the supported

versions of the runtime environments and estimate the effort to modernize incompatible components.

Integration with legacy systems usually requires special attention to communication patterns and data

consistency requirements.

Business considerations provide the final dimension of the assessment framework: it's necessary to carefully

assess cost implications of the migration not just the immediate cost of migration but also long-term

operational expense. The mapping of performance requirements-particularly response times and scaling-

against the serverless platform capabilities is important, and compliance requirements usually drive

deployment model and data residency decisions.

Decision Framework for Azure Serverless Migration

It means that the appropriate selection of Azure serverless services should be done in relation to the

characteristics and application requirements, putting a huge focus on economic consideration, as stated in

[5]. Similarly, [4] put more emphasis on how technical and business aspects are very important during the

selection of a serverless platform. The key point regarding execution time is that all applications with less

than ten minutes of processing time will be candidates for Azure Functions. In applications with consistent

loads, memory becomes a prime factor, and Azure Functions Premium Plan allows for workloads to go up

to 14GB of memory.

Network integration requirements provide a second refinement in choosing the service. Applications

requiring Virtual Network integration should consider Premium Plan Functions, while other applications

with no such requirement can go for the cost-effective consumption plan. The scaling requirement is very

vital in the selection: the event-driven workload will realize the full value of the Event Grid integration, and

HTTP/RPC workloads leverage built-in scaling.

Architecture Overview

The proposed serverless architecture, represented in Figure 1, incorporates appropriate patterns for

economic efficiency [5], while the performance considerations have been derived from [2]. This

multilayered approach corresponds with best practice and research findings regarding enterprise serverless

computing [6]. As shown in Figure 1, the serverless architecture follows a layered structure. It separates the

concerns and makes possible easy interactions between components. This architecture consists of five

layers, each with a different purpose in the whole solution. The core compute layer uses Azure Functions for

event-driven and HTTP-triggered workloads. These are especially good for short-running operations with

spiky usage patterns. Durable Functions extend this pattern to support stateful workflows and complex

orchestrations that allow for the reliable execution of long-running business processes.

It provides essential services to persist and message data: Azure Service Bus for reliable message queuing

and publish-subscribe; Storage Accounts for light state management and blob storage; and Event Grid for

event routing. This set of integration services enables flexibility in the communication patterns of the

components while ensuring system reliability. Application Insights provides the backbone for monitoring

Volume 8 Issue 3 @ 2022 IJIRCT | ISSN: 2454-5988

IJIRCT2501042 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 3

and observability, forming comprehensive insights about application performance and behavior. It is an

infrastructure that allows detecting issues proactively and optimizing performance for all components.

Figure 1: Azure Serverless Architecture Reference Model

Implementation Strategy

Research into industry practices [6] shows that successful deployments are typically the result of systematic

approaches emphasizing gradual adoption coupled with the mitigation of risks. The systematic approach to

implementing this architecture emphasizes gradual adoption and mitigation of risks. The foundational

implementation focuses on the base layers necessary to establish observability and data management before

active workload deployment.

importazure.functionsasfunc

importlogging

fromazure.storage.queueimportQueueClient

importjson

importos

defmain(req: func.HttpRequest) ->func.HttpResponse:

"""Azure Function for processing business transactionswith Azure Storage Queue integration"""

logging.info('Processing business transaction')

try:

Initialize queue client

queue_client=QueueClient.from_connection_string(

conn_str=os.environ['STORAGE_CONNECTION_STRING'],

queue_name='transaction-queue'

)

Volume 8 Issue 3 @ 2022 IJIRCT | ISSN: 2454-5988

IJIRCT2501042 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 4

Process request data

request_data=req.get_json()

Create message for queue

transaction_message= {

'transaction_id': request_data['transaction_id'],

'type': request_data['type'],

'status': 'processing'

 }

Send to queue for processing

queue_client.send_message(json.dumps(transaction_message))

returnfunc.HttpResponse(

json.dumps({"status": "success"}),

mimetype="application/json",

status_code=200

)

exceptExceptionas e:

logging.error(f"Error processing transaction: {str(e)}")

returnfunc.HttpResponse(

json.dumps({"error": "Internal server error"}),

mimetype="application/json",

status_code=500

)

At the core of each component migration, the implementation of following key principles is done in this

fashion:

• Security First: Managed identities and role-based access control are implemented from scratch for all

components. Virtual network integration and private endpoints when necessary establish network

security.

• Scalability Patterns: Implementation covers appropriate configuration of auto-scaling rules based on

foreseen patterns in workload. In the case of Azure Functions, this means appropriately setting scaling

triggers and limits; for Container Apps, KEDA scalers are used in more complex scaling scenarios.

• Resiliency Implementation: The implementation provides retry patterns, circuit breakers, and

appropriate timeout configurations for system resiliency. Service Bus topics and queues are configured

with dead-letter queues and appropriate message time-to-live settings.

• Monitoring Integration: The different components will be instrumented with Application Insights,

including metrics and distributed tracing that can maintain visibility across this particular solution.

This will provide a solid foundation with flexibility for future enhancements/optimizations. This can be

done while incrementally moving workload migrations to assure system stability and performance across the

board.

Migration Patterns and Implementation

Each of them has developed several proven patterns for serverless migration, suited to various scenarios and

requirements. The Function Decomposition Pattern can be ideal for monolithic applications where the

application needs to be divided into smaller and independent functions. This pattern basically refers to the

act of identifying discrete business functions within a monolith and systematically converting them into

serverless functions. To implement this pattern successfully, one needs to carefully map the dependencies

among functions and thoughtfully implement inter-function communication patterns.

Volume 8 Issue 3 @ 2022 IJIRCT | ISSN: 2454-5988

IJIRCT2501042 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 5

The Strangler Fig Pattern allows gradual migration of legacy applications through the reduction of risks and

incremental validation. It starts by finding components to migrate, builds serverless equivalents of those

components, and creates a routing facade that would route traffic incrementally. To be successful, the

pattern requires there to be clear boundaries between the migrated component and components not migrated,

with consistency in data access patterns. Event-Driven Transformation patterns are particularly suited to

applications that have complex workflows and/or inter-component communication requirements. This

approach involves mapping business events, implementing appropriate event publishing mechanisms, and

creating serverless event handlers. Success requires careful attention to event schema design and versioning

strategies.

Common Migration Challenges

State management is one of the biggest challenges in serverless migration, according to [1]. Traditional

applications make extreme use of in-memory state, which needs to be redesigned in a serverless

environment. While state management involves significant economic and technical challenges [5], it offers

several solutions, including using Azure Storage for simple states and Durable Functions for complicated

workflows. The organization should thus carefully assess their requirements related to state management

and implement suitable patterns.

Conclusion

Migration to Azure's serverless platform needs to be a properly planned, systematically implemented

process, with due consideration of technical and business requirements. Decision frameworks and patterns

presented herein put forward a structured approach to migration, while real-world implementation examples

demonstrate practical application of these principles. As organizations continue to modernize their

applications, the serverless paradigm offers significant benefits related to scalability, cost optimization, and

operational efficiency.

References

[1] P. Castro et al., "The Rise of Serverless Computing," Communications of the ACM, vol. 62, no. 12, pp.

44-54, 2019. DOI: 10.1145/3368454

[2] W. Lloyd et al., "Serverless Computing: An Investigation of Factors Influencing Microservice

Performance," IEEE International Conference on Cloud Engineering (IC2E), 2018. DOI:

10.1109/IC2E.2018.00039

[3]Baldini, I. et al. (2017). “Serverless Computing: Current Trends and Open Problems.” Research

Advances in Cloud Computing. Springer, Singapore. https://doi.org/10.1007/978-981-10-5026-8_1

[4] T. Lynn et al., "A Preliminary Review of Enterprise Serverless Cloud Computing (Function-as-a-

Service) Platforms," 2017. DOI: 10.1109/CloudCom.2017.15

[5] A. Eivy and J. Weinman, "Be Wary of the Economics of "Serverless" Cloud Computing," in IEEE Cloud

Computing, vol. 4, no. 2, pp. 6-12, March-April 2017, doi: 10.1109/MCC.2017.32.

[6] G. C. Fox et al., "Status of Serverless Computing and Function-as-a-Service(FaaS) in Industry and

Research," arXiv preprint arXiv:2010.14422, 2020.

https://doi.org/10.1007/978-981-10-5026-8_1

