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I.  INTRODUCTION 

Time delays are frequently encountered in many practical 
engineering systems, such as chemical processes, long 
transmission lines in pneumatic systems [1]-[8]. It has been 
shown that the presence of a time delay in a dynamical system 
is often a primary source of instability and performance 
degradation [9]. Delay-dependent robust stability criteria of 
uncertain fuzzy systems with state and input delays are 
presented in [10]. Dynamical systems with distributed time-
varying delays have been of considerable interest for the fast 
few decades. In particular, the interest in stability analysis of 
various delay differential systems has been growing rapidly 
due to their successful applications in practical fields such as 
circuit theory, aircraft stabilization, population dynamics, 
distributed networks, manual control and so on. Current efforts 
on the problem of stability of distributed time-varying delays 
system can be divided into two categories, namely delay 
independent criteria and delay dependent criteria. Distributed 
delay systems have been considered in [11]-[14]. 

The issue of robust asymptotic stability for delay 
differential systems using Linear Matrix Inequalities (LMI) 
approach is remains open, which motivates this paper. In this 
paper, we establish a new LMI condition by using the 
Lyapunov-Krasovskii functional to guarantee the asymptotic 
stability of the system concerned. A sufficient condition for the 
solvability of this problem is proposed in terms of Linear 
Matrix Inequalities (LMIs) and the validity of this result is 
checked numerically using the effective LMI control toolbox in 
MATLAB.  

NOTATIONS: Throughout this paper, for a matrix B and 
two symmetric matrices A and C, 

















C

BA

 denote the symmetric matrix, where the notation 

* represents the entries implied by symmetry. 
TA  and 

1A  

are denotes the matrix transpose and inverse of A  

respectively. We say 0>X  for 
nX   means that the 

matrix X  is real symmetric positive definite. PP   refers to 

the Euclidean norm for vectors. And I  denotes the identity 
matrix with appropriate dimensions. 

II. MAIN RESULTS 

Consider the following delay differential system  

))),((())(()(=)( ttxCftxBftAxtx           (1) 

Where 
nT

n Rtxtxtxtx )](,),(),([=)( 21   is the 

neural state vector. The matrices },,,{= 21 naaadiagA   

is a diagonal matrix and 

nnijnniji cCbBnia  ][=,][=,,1,=0,>   are the 

connection weight matrices. Further 
nT

nn Rtxftxftxftxf ))]((,)),(()),(([=))(( 2211   is 

the neuron activation function with 0.=(0)f  )(t  is the 

time-varying delay which satisfies  

0,,)()(0 21  tforeverydtandt    

Where 21,  and d  are known constants. 

The following assumption is made on the neuron 
activation function. 

(A) Each neuron activation functions )(g  in system (1) 

are bounded and satisfy the following condition  

,
)()(

0 i
ii L

yx

ygxg





  

Where ),1,2=( niLi   are some constants and they 

can be positive. So it is less restrictive than the descriptions on 
both the sigmoid activations and the Lipschitz type activation 

functions. Denote },,{= 1 nLLdiagL  . 
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Note that the function )(f  satisfies Assumption (A), and 

we have  

).()())(())(( tLxLtxtxftxf TTT   

Lemma 2.1 [15] For any vectors ,, nRyx   with 

0>P , the following inequality holds  

.2 1 PyyxPxyx TTT  
 

III. GLOBAL STABILITY RESULTS 

In this section, some sufficient conditions of stability for 
system (1) are obtained.  

Theorem 3.1  Given scalars 0>0,> 21   and 0>d , 

if there exist symmetric positive definite matrices 

,4)1,=(1,2,3),=(0,>0,>0,> jiSQP ij , and any 

matrices ,8)1,2,=(,,,,,, iOMNOMN iiiaaa  such 

that feasible solution exist for the following LMI. 
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TTTT OBLBLOOAAO 1111011 =   

 ,= 122112 MPCLOBLOACLO TTTTT   

 ,=,= 33114113

TTTTTT

a

TTT

a

T OBLOANMNBLNA   

 ,=,= 551644115

TTTTTTTTTT OBLOAOBLOAN   

 ,= 6617

TTTTT OBLOA   

 ,= 7718

TTTTT OBLOA   

 ,=,=,= 11,1111,1088119 MNOBLOAO TTTTT   

 ,=,)(1= 2232222122 XMMOCLMMXOCLCLOQd T

a

T

a

TTTTTT   

 ,=,=,= 55264422533224

TTTTTTTTTTTT MOCLMOCLNMOCLN   

 ,=,= 77286627

TTTTTTTT MOCLMOCL   

 ,=,=,=,= 43322,1122,1088229 QXMMMNMOCLO T
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TTTT   

 ,=,=,=,=,= 73863752236435334

TTTTT

a

T

a MMMUMMMN   
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T
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),(
2

1
= 21  a  for then system (1)  is asymptotically 

stable.  

Proof: We use the following Lyapunov functional to 
derive the stability result .  

 

)),(,())(,())(,())(,())(,())(,(=))(,( 654321 txtVtxtVtxtVtxtVtxtVtxtVtxtV                                          (3) 

Where  
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We can calculate derivative of )(tV  along the trajectories 

of the system (1) , then we have . 

 

)))],((())(()([)(2))(,(1 ttxCftxBftAxPtxtxtV T                                                                                 (4) 

)()()()())(())(())((1)()())(,( 32112 txQtxtxQtxttxQttxttxQtxtxtV TTTT    

),()()()()()()()( 42321214 aa

TTTT txQtxtxQtxtxQtxtxQtx                                       (5) 
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Thus from, (4)-(7) and using Jensen's inequality [?] in (7) 
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Where  

 ,=(1,2),=(1,1) 22122211110  PCL  

 ,=(4,4),=(3,3),)(1=(2,2) 18284251551  QQQd  
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According to Leibniz-Newton formula, for any matrices 

,8)1,=(,, iNN ia , the following equation holds  
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It follows from Lemma 2.1 and by Leibniz-Newton 
formula that  
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According to Leibniz-Newton formula, for any matrices 

,8)1,=(,, iMM ia , the following equation holds  
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Then, we add the terms on the left sides of equation (8), 

(10), (12) to )(tV  and consider the equation (9), (11), we 

obtain  

).()()( tttV T    

This completes the proof. 

IV. NUMERICAL EXAMPLES 

Example 1. Consider the system (1)  with time varying 

delays. The model of this system is of the following form: 
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By using the Matlab LMI toolbox, we solve the LMI (3)  
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,
0.83650.0017

0.00170.8747
=2 








Q  

,
0.83740.0013

0.00130.8742
=3 








Q    

,
0.92700.0036

0.00360.9669
=4 








Q     

,
0.73870.0019

0.00190.7560
=1 








S   

,
0.74770.0007

0.00070.7494
=2 








S    










0.69680.0025

0.00250.7435
=3S   

Therefore, the concerned system with time-varying delays 
is asymptotically stable. 

CONCLUSION 

A new sufficient condition is derived to guarantee the 
stability of the equilibrium point for fuzzy cellular neural 
networks with interval time varying delays. A linear matrix 
inequality approach has been developed to solve the problem 
addressed. Our results can be easily verified and also less 
conservative than previously known criteria. 
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