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Abstract—This paper proposes an approach for the stability
of delay differential systems. The key features of the approach is
that to obtain generalized stability region, a parameterized model
transformation with free weighting matrices is introduced. In
fact, these techniques lead to generalized and less conservative
stability condition that guarantee the wide stability region. The
proposed stability conditions are demonstrated with numerical
examples. Comparisons with other stability conditions in the
literature shows the derived conditions are the more powerful
ones to guarantee the widest stability region.
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l. INTRODUCTION

Time delays are frequently encountered in many practical
engineering systems, such as chemical processes, long
transmission lines in pneumatic systems [1]-[8]. It has been
shown that the presence of a time delay in a dynamical system
is often a primary source of instability and performance
degradation [9]. Delay-dependent robust stability criteria of
uncertain fuzzy systems with state and input delays are
presented in [10]. Dynamical systems with distributed time-
varying delays have been of considerable interest for the fast
few decades. In particular, the interest in stability analysis of
various delay differential systems has been growing rapidly
due to their successful applications in practical fields such as
circuit theory, aircraft stabilization, population dynamics,
distributed networks, manual control and so on. Current efforts
on the problem of stability of distributed time-varying delays
system can be divided into two categories, namely delay
independent criteria and delay dependent criteria. Distributed
delay systems have been considered in [11]-[14].

The issue of robust asymptotic stability for delay
differential systems using Linear Matrix Inequalities (LMI)
approach is remains open, which motivates this paper. In this
paper, we establish a new LMI condition by using the
Lyapunov-Krasovskii functional to guarantee the asymptotic
stability of the system concerned. A sufficient condition for the
solvability of this problem is proposed in terms of Linear
Matrix Inequalities (LMIs) and the validity of this result is
checked numerically using the effective LMI control toolbox in
MATLAB.

NOTATIONS: Throughout this paper, for a matrix B and
two symmetric matrices A and C,
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A B

C | denote the symmetric matrix, where the notation

* represents the entries implied by symmetry. A" and A
are denotes the matrix transpose and inverse of A
respectively. We say X >0 for X €R" means that the
matrix X is real symmetric positive definite. P-P refers to

the Euclidean norm for vectors. And | denotes the identity
matrix with appropriate dimensions.

Il.  MAIN RESULTS
Consider the following delay differential system

X(t) = —Ax(t) + Bf (x(t)) +Cf (x(t —z(t))), 1)

Where  X(t) = [X (1), X, (t),..., X, (1)]" €R" is the
neural state vector. The matrices A = diag{a,,a,,...,a,}

is a diagonal matrix and
g >0,i=1,...,n,B=[b;]...C=[c;l.., ae the
connection weight matrices. Further

F(X() =[H040), F,06O)..... f, (O €R" s
the neuron activation function with f(0) =0. z(t) is the
time-varying delay which satisfies

0<r7 <7(t)<r,and 7(t) <d, foreveryt >0,

Where 7,, 7, and d are known constants.

The following assumption is made on the neuron

activation function.

(A) Each neuron activation functions ¢(-) in system (1)
are bounded and satisfy the following condition

0 900=0.0) _ |
X—Yy
Where L, (i1=1,2...,n) are some constants and they

can be positive. So it is less restrictive than the descriptions on
both the sigmoid activations and the Lipschitz type activation

functions. Denote L =diag{L,,...,L,}.
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Note that the function f (-) satisfies Assumption (A), and

we have

Lemma 2.1 [15] For any vectors X, yeR", with
P >0, the following inequality holds

I1l.  GLOBAL STABILITY RESULTS
In this section, some sufficient conditions of stability for

fT(x(t)) f (x(t)) < xT (t)L"Lx(t). system (1) are obtained.

Theorem 3.1 Given scalars 7, >0,7, >0 and d >0,
if there exist symmetric positive definite matrices
P>0, QJ- >0,S,>0,(1=1,23),(j=1,...,4), and any
2x"y <x"Px+y"Py. matrices N,, M, O,,N.,M,, 0., (i=12,....8) such
that feasible solution exist for the following LMI.

Q, Q Q, Qy Q6 Q,; Q Qy Q1,10 Q1,11
Q,, Qy Q,, Qg Q6 Q,, Q4 Qg Qz,lo QZ,ll
* Qy, Qg Qg Qs Qg Qg Qg QB,IO Qz,u
* * Q, Q5 Q6 Q, (g Qg Q4,10 Q4,11
* * i Qg Qg Qg; Qg Qg Q5,10 Qs 44
* * * * Qg6 Qg Qg Qg QG,lO QS,ll <0,
* 3 B i 3 Q; Qg Qg Q7,10 Q7,11
* 3 o ) 1 X 88 Qg Qs,m Qs,n
* - * * * * * Qg Q9,10 Qg,n
* * * * * * * * Q]_Oylo Q]_O']_]_
* * * * * * * * * Q]_]_’ll
)

Q,=2,-0,A-A"0,+OBL+L"B"O/

Q,=0CL-AO, +L'B"O; +PCL-M,,

Q,= —A" N; +L'BT N; +M,,Q,=-N, - ATO; +LU BTO;,

Q.=N,— ATOI +LU BTOI Qg = —ATO; +L BTO;,

Q,=-A"0] +L'B'O;,

Q= —ATO7T +LU BTO7T,

Q19 = _Ol - ATOST +U BTO; ’Ql,lO = Nl’ Ql,ll = Ml'

Q,, =—(1-d)Q,+0O,CL+L'C'O; +X-M; —-M,,Q,,=L'C'O; +M,-M] - X,

Q,,=—N, + LTCTO3T - M;,QZS =N, + LTCTOI — I\/II , Qo = LTCTO; - MST,

Q,=LC’0] -M],Q,,=L'C"0] —M7,

Q,,=-0,+L'C'0O; — My, Q107 Ny, Q) =M, Qs =M, + M] +X-Q,

Q34 :_Na+M3T’st = Ma"‘MI’Qse :_Usz+M5T!Qs7 = Mg’st = M7T'
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Q= _Oa+M;’Q3,1O =N, =M, Q,,=-Q,- Ng — N3 +W, Q5= N, =N, -W,

Q6= _N;’ Q,;= _Vsz - Ng’ Q6= _N7T 0, 9=-0,— NsT’ Q107 N3, Q1= My,

@,

5,5 = N;ll- + N4 +W_Q3’ Q5,6 = N;’ Q5,7 = Nf-ir’ Q5,8 = N;’QS,Q :_O4+ NE;r’

@)

510 =Ny Q5 1, =M, Qg g =-S5, ,=0,0,=0,0 , =05, Qs ,, = Ny, Qs 1, = M,

@,

77==55,0,5=0,0, =04, ;= Ng, €, = Mg, Qg s ==5;, Qg =0,

Qg10= N7, Qg =M;, Qg = _O; —05,Q 0= Ng, Qg 1, = Mg, Qy 1, =W, Q,,,, =0,

@,

= —X,Z =—ATP—PA+Q, +Q, +Q,+Q, + 7S, +7/S, + 7,5, + PBL+ L'B'P,

1 Proof: We use the following Lyapunov functional to
7, :E(Z’l-l-‘[z), for then system (1) is asymptotically  derive the stability result .

stable.

V(£ x(1) = Vi (t, (1)) +V, (t, X(1)) + V5 (& X(0) +V, (& X(0) + Vs (t, X(1)) + Vi (t, X(1)), 3)
Where
VL (6, x(t)) = X" (t) P x(),

V, (t, x(t)) = f_m)XT (s) Q, x(s)ds + j: X" (s) Q, X(s) ds+ f X" (S) Q,x(s) ds + f x" (s) Q, X(s) ds,

Vit x@) =z, [ X 68, x@ds dBr[ [ x1(6)S, xe)dsdp+e, [ [ x"(5) S, x(s)ds d
[ 0 T, o] X0
V, (t,x(1) = J‘:J x(s)ds { * Uzj Jir x(s)ds '
[0 T, v, X0
Vi (8, x(t)) = Iti x(s)ds { * sz Ji x(s)ds |

X(t) w, ow,T X®
Vs (t x(1)) = f x(s)ds {* sz j: x(s)ds |

I—rz

We can calculate derivative of V (t) along the trajectories
of the system (1), then we have .

\/'l (t, x(1) < 2x" () P[-AX(t) + Bf (x(t)) + Cf (x(t —z(t)))], (4)
V, (t, x(1)) < X" (1)QuX(t) — (1 2(t))x" (t—7(t))QX(t — 7 (t)) + X" ()Q,X(t) + X" (t)Q;X(t)
+XT(O)QX() = X" (t—7,)QX(t —7,) — X" (t—7,)QX(t —7,) — X" (t —7,)Q,X(t —7,), (5)
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V, (t (1) < 72X (©)SX(1) + X" (©)S,x(1) + 72X (1)SX(t)
S RCER LA OREOLI A MEORR O ©

Thus from, (4)-(7) and using Jensen's inequality [?] in (7)

_(1’1) (112) 53 El3 EZS E4 514 EZ4 ]
* (2’2) EG ElG 526 E? El7 527
* * 33 0 0 =, 0
. x x (44 0 0 = 0
e S EAC)
1 =29

Where
QYD) =5+5 +E,;+5,, 1. A=PCL+E, L= L=,
(2,2) =-(1-d)Q, +E; +E;. + B, (3,3) = -Q, + &g, (4,4) = Q, +E,,,
(5,5) =-Q,+E,4,(6,6) ==S, +E,,, (7,7) = =S, + E,,, (8,8) = =S, + E,,,
£ =X O X €)X = 2) X =2) 1Tt =2)([, X(6)d)" (| x(5)ds) ([, x(s)as)"]

According to Leibniz-Newton formula, for any matrices
N,, N;,(i=1,...,8), the following equation holds

20X (©) Ny + X (= 2(®) N, + X7 (t=2) Ny + X (t=1,) N +([_ x(5)ds)" N,
([ X)) Ny + ([ x(8)d8)" N, +X (N, + X7 (t-7,) N,]

x[X(t-7,) = x(t—7)~ [ *x(s)ds] = 0. )

It follows from Lemma 2.1 and by Leibniz-Newton
formula that

“2LXT (0) N, + X (t— (D)) N, + X" (t=7,) N, + X" (t=7,) N, +(j; x(s)ds)" N,
+( _|.t t_r x(s)ds)" Ng + (J.:_T x(s)ds)" N, + X" (t)Ng +x" (t—7,) Na]J:ZX(s)ds

<EONWENTEQ+(] :’ZX(s)ds)T w ([ ‘_‘:2>'<(s)ds)
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SETONWTNT SO +[X(t—7,) = x(t—7)]" W [x(t—7,) = x(t—7)], 8)
Where

1O =X O X €)X -z)x (t=7) X =) ([, X)) ([ x(6)ds)" ([ x(s)ds)" X7 ()

andN™ =[NJ NJ NT NJ NJNJ NT NT NJT.

According to Leibniz-Newton formula, for any matrices
M,, M,,(i=1,...,8), the following equation holds

X' )M+ X" (t—z(®) M, +X (t—7,) M+ X (t—7,) M, +(I; x(s)ds)" M,
+ (f x(s)ds)" M + (f_ X(3)ds)" M, + X" ()M, + X" (t—z,) M_]

x[X(t-7,) - x(t—(t) - | :TZ)X(s)ds] =0. ©

It follows from Lemma 2.1 and by Leibniz-Newton
formula that

22X O M+ X"t —z@®)) M, + X" (t—7,) M+ X" (t-7,) M, +(I; x(s)ds)" M,
# (X)) M+ ([ X()d) M, +XTOM, + X (t-7,) M,1[ " (s)ds

<EONWENTEQ+ (] t_:x(s)ds)T w ([ :T;)X(s)ds)

<EMOM XTMTER) +[X(t—7,) - xt -] X [x(t—7,)=x(t-z()], (10)
Where According to equation (3), for any  matrices
MT =[M] M] M] M] M;M] M M] M/ ]. 0,,0,(1=1,...,8), the following equation holds

2[x" (1) O, + X" (t—7(t)) O, + X" (t—7,) O, + X' (t—7,) O, + (J.:_r x(s)ds)" O,

+([ x©d) O, +([ x(8)ds)" O, +X (0, + X' (t-7,) O,]

x[-X(t) +{—Ax(t) + Bf (x(t)) + Cf (x(t —z(t)))}]1 = 0. (11)
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Then, we add the terms on the left sides of equation (8),
(10), (12) to V(t) and consider the equation (9), (11), we
obtain

V(1) <&ET() QE).

This completes the proof.

IV. NUMERICAL EXAMPLES

Example 1. Consider the system (1) with time varying
delays. The model of this system is of the following form:

X(t) = —Ax(t) + Bf (x(t)) +WF (x(t —z(t))),

and

0 -0.3 -0.2
A= B= g
5 0.3 0.4
-0.5 0.7 1 0
C= L= .
-0.8 -1 0 1

By using the Matlab LMI toolbox, we solve the LMI (3)
for 7, =0.5,7, =1.5 and d =0.5 the feasible solutions

are
06632  0.0127
“10.0127 05652
_[0.9233  0.0815
' 10.0815 1.3429
o _[0.8747 0.0017
>710.0017  0.8365]
0 _[0.8742  0.0013]
® 100013 08374
0 _[0.9669  0.0036]
*70.0036 09270
_[0.7560  0.0019
' 10.0019 0.7387
_[0.7494  0.0007
2 10.0007 0.7477

©2016 JIRCT | ISSN: 2454-5988

0.7435 0.0025
0.0025 0.6968

Therefore, the concerned system with time-varying delays
is asymptotically stable.

3

CONCLUSION

A new sufficient condition is derived to guarantee the
stability of the equilibrium point for fuzzy cellular neural
networks with interval time varying delays. A linear matrix
inequality approach has been developed to solve the problem
addressed. Our results can be easily verified and also less
conservative than previously known criteria.
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